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Accurate brain tissue segmentation is essential for constructing individualized head models in noninvasive
brain stimulation. This study investigated how loss function design influences segmentation performance using
a large dataset of over 500 T1-weighted MRIs. A 3D U-Net was trained to segment the skin, skull, cerebrospinal
fluid (CSF), gray matter (GM), and white matter (WM) using either Dice or combined Dice + Cross-Entropy
(Dice+CE) losses. Quantitative results showed that Dicet+CE achieved higher overall accuracy (0.8577 vs.
0.8550) and mean IoU (0.2863 vs. 0.2716), with notable improvements in low-contrast tissues such as skin, skull,
CSF, and GM. WM slightly favored Dice due to its large and homogeneous structure. Qualitative analysis
indicated clearer tissue boundaries and fewer misclassifications with Dice+CE. These findings demonstrate that
combining Dice and Cross-Entropy losses enhances segmentation accuracy and provide evidence for optimizing
brain tissue segmentation model performance.
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1. Introduction

Recent advances in non-invasive brain stimulation (e.g.,
transcranial electric stimulation) emphasize personalized
approaches to improve clinical reproducibility, reduce
inter-subject variability and tailor stimulation to individual
neuroanatomy. Personalized stimulation requires that the
head model accurately reflects an individual’s anatomical
structures, which in turn depends on precise tissue
segmentation of three-dimensional images such as MRI
and CT. Segmentation is the first step in constructing
computational head models for electric-field simulations.
it extracts key tissues including the scalp, skull, cerebro-
spinal fluid (CSF), grey matter and white matter from
structural MRI or CT images [1]. Accurate segmentation
is assessed using metrics such as the Dice similarity
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coefficient and the modified Hausdorff distance [1], and
errors propagate through subsequent modelling stages.
Single-modality images may struggle to differentiate
certain boundaries; for example, a T1-weighted MRI
separates soft tissues well but makes it difficult to
distinguish the Skull, CSF interface. T2-weighted MRI
highlights CSF, while CT excels at delineating bone.
Therefore, combining T1 with T2 or CT images improves
skull and CSF segmentation but requires careful
co-registration [2]. In tumour segmentation tasks, multi-
modal MRI sequences (T1, T2, contrast-enhanced T1 and
FLAIR) provide complementary information that improves
segmentation accuracy compared with single-modality
images [3].

Accurate delineation of anatomical structures directly
influences diagnostic and therapeutic precision and
enables time-efficient workflows. Early clinical practice
relied on manual segmentation, which requires clinicians
to outline structures on every slice (often hundreds of
images) and is therefore labour-intensive, time-consuming
and subject to inter and intra-observer variability [4].
Classical automated methods such as thresholding,
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edge-based and region-growing algorithms or atlas
registration improved efficiency but remained sensitive to
noise and intensity inhomogeneity and often produced
unstable results [5]. Moreover, traditional methods
struggle with small tissues and ambiguous boundaries.
Small organs occupy only a tiny fraction of the image
volume and have unclear boundaries, leading to poor
segmentation performance [5].

Deep learning based segmentation, particularly con-
volutional neural networks (CNNs), has become the
dominant approach in recent years. Three dimension(3D)
U-Net and its variants use encoder—decoder architectures
with skip connections to capture both contextual and
fine-grained features and have become the de-facto
standard for volumetric CT and MRI segmentation across
a wide range of tasks [5]. Compared with manual or
classical algorithms, CNN-based segmentation offers
superior accuracy and efficiency, substantially reducing
processing time and allowing real-time or near-real-time
applications. In the context of non-invasive brain
stimulation, precise segmentation of tissues such as bone,
fat and air spaces is essential because the electrical
conductivity of each tissue influences current flow;
detailed segmentation also enables modelling of small
structures (e.g., blood vessels) that were previously
ignored or required contrast agents [1]. Nevertheless,
challenges remain to accurately segmenting tiny struc-
tures and low-contrast boundary regions, accommodating
anatomical variability across individuals, choosing
between single or multi-modal imaging inputs, improving
model performance while minimizing computation time
and memory consumption, and coping with scanner
differences or patient motion [5]. Addressing these issues
remains an active area of research.

In current practice, many models segment white matter,
grey matter, CSF, bone, fat/muscle and ocular structures
using single images (T1, T2 or CT) or combining MRI
with CT. Among them, 3D U-Net based models are
widely used owing to their strong performance [5]. A
critical factor in these models is the loss function, which
guides how the network learns from segmentation errors.
Popular choices include the Dice loss, the cross-entropy
loss and its combinations. The Dice loss maximizes
overlap between predicted and reference regions but may
be unstable or insensitive to boundary errors. The
cross-entropy loss treats segmentation as voxel-wise
classification but can be dominated by majority classes.
Combining the two losses leverages complementary
strengths and mitigates class imbalance. For example,
researchers have defined a composite loss as the sum of
Dice and cross-entropy losses and reported robust
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performance across diverse class distributions [6].
Another study noted that cross-entropy alone was
influenced by mainstream pixels and that adding the Dice
term stabilized training and improved segmentation
accuracy [7]. In a recent multimodal brain-tumour
segmentation model (ResSAXU-Net), a fusion loss
combining Dice and cross-entropy losses helped address
network convergence and data imbalance, yielding Dice
similarity coefficients above 0.95 across tumor subregions
[8]. These studies suggest that combining multiple loss
functions can improve segmentation performance, however
most prior works have focused on specific lesions or
limited datasets. There is still a lack of systematic, large-
scale analyses investigating how the choice of loss
function affects overall segmentation accuracy and
boundary awareness in general MRI based brain tissue
segmentation. In addition, existing studies have primarily
concentrated on internal brain structures such as GM,
WM and CSF [9], while cases that perform simultaneous
segmentation of the entire head including skin and skull
using only MRI data remain very limited [10].

Therefore, in this study, we applied a large-scale MRI
dataset and a 3D U-Net architecture to compare the
effects of the Dice loss function and the combined Dice +
Cross-Entropy loss function on the segmentation of major
brain tissues, including skin, skull, CSF, GM, and WM.
Through this comparison, we aimed to analyze differ-
ences in segmentation accuracy and boundary recognition
across tissues depending on the loss function and to
provide insights for optimizing brain tissue segmentation
model performance.

2. Methods

Model training used the publicly available IXI dataset
[11]. The cohort comprises approximately 582 healthy
volunteers and includes multiple MRI sequences (T1, T2,

Table 1. Information of publicly available IXI dataset.

Parameter Description

Number of subjects 582 healthy volunteers
T1, T2, Proton Density, MRA, DTI
Hammersmith Hospital: Philips 3T
Guy’s Hospital: Philips 1.5T
Institute of Psychiatry: GE 1.5T
NIfTI-1

256 x 256 x 150

Imaging sequences
Scanner details

Image Data format
Original Image size

Spatial reS(?lutlon 0.96 x 0.96 x 1.2 mm’
(Voxel size)
Data used in this study 552 T1-weighted volumes
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Proton Density weighted, MRA, and DTI). Scans were
acquired on three scanners across London sites: Hammer-
smith Hospital (Philips 3T), Guy’s Hospital (Philips
1.5T), and the Institute of Psychiatry (GE 1.5T) and are
distributed in NIfTI-1 format. Native volumes measure
256 x 256 x 150 voxels with a voxel size of 0.96 x 0.96
x 1.2 mm?. In this study, only T1-weighted images were
considered, and a total of 552 T1 volumes were used for
model development. Information about the detailed MRI
image data set is shown in Table 1.

2.1. Data Labeling
For personalized neuromodulation, five tissue classes
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were segmented: skin, skull, cerebrospinal fluid (CSF),
gray matter (GM), and white matter (WM). Training
labels were generated with an automatic pipeline built
from open-source tools. Extracranial tissues and CSF
were obtained using the atlas-based charm workflow in
SimNIBS v4.5 [12], which applies deformable atlas
registration to produce subject specific label maps.
Parenchymal tissues (GM, WM) were derived with
FastSurfer [13], a CNN-based neuroanatomical seg-
mentation framework, from which GM and WM masks
were extracted. The cerebellum was not treated as a
separate class and was merged into GM or WM as
appropriate.

Label MAP

1X1058-Guys-0726

1X1070-Guys-0767

1X1600-HH-2660

1X1209-Guys-0804

1X1319-Guys-0901

1X1286-Guys-0859

1X1282-HH-2025

IXI130-HH-1528

1X1465-HH-2176

1X1608-HH-2599

Fig. 2. Labeled images which is randomly sampled from 552 MRI dataset.
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Table 2. Label information: label indices for background, skin,
skull, cerebrospinal fluid (CSF), gray matter (GM), and white
matter (WM).

Tissue Labeling Number

Background 0
Skin 1
Skull 2
CSF 3

Gray Matter 4

White Matter 5

Figure 1 illustrates the workflow: FastSurfer provides
GM/WM masks, SimNIBS-charm provides skin, skull,
CSF masks, and the outputs are fused to obtain the final
label map. For quality control, ten labeled volumes were
randomly sampled for visual inspection. Representative
examples are shown in Fig. 2. Class indices for each
tissue are summarized in the accompanying Table 2.

2.1.1. Automated Post-processing.

It is important to note that no manual corrections or
human editing were applied to the labels. However, to
refine the quality of the automatically fused labels, a
targeted automated post-processing step was implemented
using MATLAB. This procedure was specifically applied
to the skin and skull tissue classes to mitigate artifacts
from the initial automated segmentation tools. For the
skin mask, a connected-component analysis was performed
to identify and retain only the largest connected structure,
effectively removing smaller, isolated noise components.
Similarly, for the skull mask, noise reduction was
achieved by applying a volume threshold, where all
connected components consisting of fewer than 70 voxels
were programmatically removed. This automated cleaning
ensured cleaner segmentation boundaries for these complex
tissues prior to model training.

2.2. Data preprocessing

Model development was conducted in MATLAB
R2024a. Prior to training, all input data underwent
preprocessing, performed entirely within the MATLAB
environment. No data augmentation was applied during
either the training or testing phases.

2.2.1. Intensity normalization

All native T1-weighted MRI volumes were min—max
normalized to the [0,1] range prior to training to reduce
inter-scan intensity variability, improve numerical stability,
and avoid on-the-fly scaling (thereby lowering GPU
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memory load). Because raw MR intensities vary with
acquisition settings and hardware, this preprocessing step
was applied uniformly across the dataset to mitigate
distributional shifts and support better generalization.
Min—max normalization was computed as:

Iixyz) = Imin

Inorm(X:Y:Z) = (D

Imax - Imin

where I(X, Y, Z) denotes the original voxel intensity at
location (X, Y, Z), and 1,,;, and I, are the minimum and
maximum intensities within the volume, respectively.

2.2.2. Spatial preprocessing (Image Resizing and Pad-
ding)

All T1-weighted MRI volumes were resampled to an
isotropic voxel size of 1x1x1 mm?® to harmonize spatial
resolution across datasets. Each volume was then
standardized to a uniform input shape by zero-padding to
256%256x256 voxels, yielding consistent dimensions
across the axial, coronal, and sagittal planes. This
procedure minimizes inter-scan spatial mismatch and
enforces a consistent input format for both model training
and downstream deployment.

2.3. Network architecture: 3D U-Net

A three-dimensional(3D) U-Net was implemented to
achieve high-fidelity tissue segmentation in volumetric
MRI [14]. The model extends the canonical 2D U-Net to
3D, thereby preserving through-slice spatial context that
is essential for analyzing voxelwise volumes. The
network follows an encoder—decoder topology: the
encoder stacks 3D convolutions with batch normalization
and ReLU activations, interleaved with max-pooling for
hierarchical feature abstraction. The decoder employs
transposed up-convolutions and skip connections to
progressively restore spatial resolution while retaining
fine-grained localization. Skip connections concatenate
shallow, spatially precise features with deeper, semantically
rich representations, improving delineation of small
structures and ambiguous boundaries.

Input volumes were partitioned into 64x64x64 voxel
patches sampled from the preprocessed 256x256x256 T1-
weighted images [15]. The segmentation target comprised
six classes: background, skin, skull, cerebrospinal fluid
(CSF), gray matter (GM), and white matter (WM). A
voxelwise softmax at the output layer produced class
probabilities. Two training objectives were examined:
Dice loss and a composite Dice—cross-entropy loss,
enabling direct comparison of their effects on segmentation
performance.
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Fig. 3. (Color online) Patch-based 3D U-Net for MRI tissue segmentation. From each preprocessed T1-weighted volume

(256%256%256), cubic patches (64x64x64) are sampled as inputs.

The 3D U-Net backbone affords greater through-slice
continuity and volumetric precision than 2D architectures,
which is advantageous for delineating ambiguous
boundaries and small structures in medical images.
Accordingly, a 3D U-Net was trained for MRI tissue
segmentation, and performance differences attributable to
the loss formulation were systematically evaluated. The
network configuration and input strategy are illustrated in
Fig. 3.

2.4. Training configuration

A patch-based 3D U-Net was trained on 552 TI-
weighted MRI volumes. Subjects were partitioned into
training/validation/test sets in a 7:2:1 ratio (386/110/56),
ensuring no subject overlap across splits. Each volume
was preprocessed to 256%256%256 voxels, from which
cubic input patches of 64x64%x64 voxels were uniformly
sampled. To mitigate class imbalance, a center-voxel label
constraint was imposed so that sampled patches were
evenly distributed across background, skin, skull, CSF,
GM, and WM [15]. Training was executed on a work-
station equipped with two Intel Xeon Gold 6526Y CPUs,
four NVIDIA RTX 4000 Ada GPUs (20 GB each total
GPU memory 80 GB), and 2 TB system RAM (32x64
GB RDIMMs). Optimization used Adam with an initial
learning rate of 1x10~° and a mini-batch size of 24. For
each epoch, 24 patches were drawn per volume from the
training set; validation was performed every 50 iterations
to monitor convergence and select checkpoints. Two loss
formulations were evaluated: (i) pure Dice loss and (ii) a
composite Dicetcross-entropy objective. For each loss,
models were trained for 30 and 50 epoch to assess the
effect of training duration on performance. The learning
options referenced above are summarized and presented
in Table 3.

Table 3. Comparative Training Setup: Dice-only vs. Hybrid
(Dice+CE) Losses.

Training Option Baseline (Dice) Hybrid (Dice+CE)
Model type 3D U-Net
552 T1 MRI Image(3D voxel image)
Data Set o o
7(Training/386) : 2(Validation/110) : 1(Test/56)
Optimizer Adam
learning rate le-5
Validation Frequency 50
Mini BatchSize 24
Input Size 64 X 64 X 64
Epoch 30 50
Loss function Dice Loss Dice + Cross-Entropy

Loss

2.5. Evaluation metrics

The effect of the loss function on MRI tissue-
segmentation performance was evaluated using multiple
metrics: global accuracy, per-class accuracy, mean
accuracy, the intersection over union (IoU), and per-class
IoU. Definitions of these metrics are provided below.

2.5.1. Global Accuracy/Accuracy/Mean Accuracy

Accuracy quantifies the proportion of correctly classi-
fied voxels among all voxels. Global accuracy evaluates
this quantity over the entire segmentation irrespective of
class, whereas per-class accuracy is computed separately
for each class using the same definition. Let TPc denote
the number of voxels correctly assigned to class C, FPc
the number of voxels incorrectly predicted as class C, and
FNc the number of voxels that truly belong to class C but
were predicted otherwise. Then
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2cTPc

GlobalAccuracy = ——————
2cTPc + XcFNe

@
Per-class accuracy denotes, for a given class C, the
proportion of voxels correctly identified as C:

TP,

TP; + FN, )

Accuracy; =

This metric indicates how accurately the model
recognizes voxels of class C. The mean accuracy is
defined as the unweighted average of per-class accuracies
across all C classes:

c
1
Mean Accuracy = T Z Accuracy. 4)
c=1

2.5.2. I0U/Mean IOU

The intersection over union (IoU), also known as the
Jaccard index, quantifies the degree of overlap between
the predicted and reference regions. At the voxel level for
class cc, let TP., FPc, and FN. denote the numbers of
true-positive, false-positive, and false-negative voxels,
respectively. The classwise IoU is defined as:

FN¢
®)
TP; + FP; + FN,

IOUC =

The mean IoU is the unweighted average across
all CC classes:

c
1
Mean IoU =EZIOUC 6)
c=1

2.6. Statistical Analysis

To rigorously determine whether the observed differ-
ences in segmentation performance between the single
Dice loss and the composite Dice + Cross-Entropy (CE)
loss were statistically meaningful, a formal statistical
analysis was conducted on the per-subject metrics
obtained from the 56 test volumes. Since both loss
functions were applied to the exact same set of subjects,
the performance comparison constitutes a paired data
scenario. Consequently, a paired two-sample t-test was
chosen to assess the difference in mean performance for
all key metrics, including Global Accuracy, Mean Dice
Score, and Per-class IoU. This test is appropriate for
determining if the mean difference between the paired
observations is significantly non-zero, provided the
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differences are approximately normally distributed. The
analysis aimed to test the following hypotheses: the Null
Hypothesis H stated that the mean performance difference
between the two loss functions is zero (i.e., there is no
significant difference); conversely, the Alternative Hypo-
thesis (H;) stated that the mean performance difference is
not zero (i.e., there is a statistically significant difference).
All statistical calculations were performed using the
MATLAB R2024a environment. Consistent with conven-
tional statistical practice in medical imaging research, a
result was deemed statistically significant if the P-value
was less than 0.05 (p < 0.05).

3. Results

Performance was compared between a Dice-only model
and a hybrid Dice+cross-entropy (Dice+CE) model on a
held-out test set of 56 T1-weighted MRI volumes. Global
accuracy exceeded 0.85 for both models, with a marginal
gain for Dice+CE (0.8577) over Dice-only (0.855; A =
+0.0027).

Per-class accuracies showed broadly consistent
improvements for Dicet+CE in non-background tissues.
Background accuracy was essentially unchanged across
models. In contrast, Dice+CE yielded higher accuracies
for skin (0.1479 vs. 0.0812; A = +0.0667), skull (0.2430
vs. 0.1925; A = +0.0505), CSF, and GM. White matter
presented an exception, where the Dice-only model
performed better (0.5084 vs. 0.4779; A=-0.0305).
Overall, the hybrid loss offered small gains in global
accuracy and more consistent improvements across most
tissue classes, with a trade-off observed in WM.

3.1. Intersection-over-Union (IoU)

Class-wise loU generally favored the hybrid Dice+CE
model over the Dice-only baseline. Notable gains were
observed for skin (0.090 vs. 0.0609; A =+0.0291%), skull
(0.141 vs. 0.1104; A = +0.0306), CSF (0.064 vs. 0.0562;
A =+0.0078), and GM (0.2082 vs. 0.1915; A =+0.0167),
with a modest improvement also seen for background.
White matter was the only exception, where performance
was essentially unchanged, with a slight advantage for
Dice-only (0.3129 vs. 0.311; A = -0.0019). Overall, loU
results corroborate the accuracy findings, indicating more
consistent tissue-wise gains from the composite loss.

Classwise IoU likewise favored the hybrid Dice+CE
loss over the Dice-only baseline. Improvements were
observed for skin (0.090 vs. 0.0609 A=+0.0291), skull
(0.141 vs. 0.1104 A=+0.0306), CSF (0.064 vs. 0.0562
A=+0.0078), and GM (0.2082 vs. 0.1915 A=+0.0167),
along with a modest gain for background. White matter
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Table 4. Comparison of Segmentation Performance Metrics Between Dice Loss and Dice—Cross-Entropy Loss.

Tissue / Metric Accuracy Accuracy 10U (0)8]
(Dice) (Dice+CE) (Dice) (Dice+CE)
Back Ground 0.9557 0.9545 0.8974 0.9035
Skin 0.0812 0.1479 0.0609 0.09
Skull 0.1925 0.243 0.1104 0.141
CSF 0.094 0.1045 0.0562 0.064
GM 0.3405 0.3557 0.1915 0.2082
WM 0.5084 0.4779 0.3129 0.311
Global Accuracy 0.855+0.0178 0.8577+0.0213 - -
Mean Accuracy 0.362 + 0.0581 0.3806 + 0.0745 - -
Mean IOU - - 0.2716 + 0.0468 0.2863 +0.0639

was the sole exception: the two models performed
similarly, with a slight advantage for Dice-only (0.3129
vs. 0.311 A=—0.0019). Overall, IoU results are consistent
with the accuracy analysis, indicating more reliable
tissue-wise segmentation from the composite loss.

Taken together, both the mean accuracy (0.3806 vs.
0.3620) and the mean IoU (0.2863 vs. 0.2716) were
higher for the hybrid Dice+CE loss than for Dice-only,
indicating an overall improvement in segmentation

Dice Loss

1X1012-HH-1211

performance. Gains were particularly pronounced for
tissues with ambiguous boundaries (e.g., skin, skull, CSF,
and GM), where the composite loss yielded more reliable
delineation. Summary values for each evaluation metric
are reported in Table 4.

Qualitative comparison was performed on four randomly
sampled test volumes in Fig. 4. With Dice-only training,
skin—skull interfaces frequently exhibited boundary
ambiguity and cross-class leakage. Applying the hybrid

Dice + CE Loss

1X1023-Guys-0699

1X1048-HH-1326

1X1049-HH-1358

Fig. 4. (Color online) Qualitative comparison of tissue segmentation on four randomly selected test subjects (representative axial,
coronal, and sagittal slices). Left: model trained with Dice loss only. Right: model trained with the hybrid Dice+cross-entropy

(Dice+CE) loss.
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Fig. 5. (Color online) Comparison of Segmentation Accuracy Metrics between Dice Loss and Dice + Cross-Entropy Loss on 56

Test dataset.

Dice+CE loss reduced these errors; although some edge
regions remained imperfect, the overall delineation was
more stable and accurate than with Dice alone. For CSF,
the Dice-only model occasionally produced comparatively
clean contours in extracerebral spaces, but in gray and
white matter the same model showed prominent mis-
segmentation—extending labels into anatomically unrelated
regions and creating spurious islands. These errors were
substantially attenuated under Dice+CE, yielding more
faithful GM/WM parcellation. In sum, the hybrid loss
produced superior qualitative segmentations, particularly
in boundary recognition and region-specific precision,
while retaining comparable performance in easier com-
partments.

3.2. Statistical Significance of Performance Gains.

To confirm the robustness of the observed performance
improvements, a paired two-sample t-test was conducted
comparing the per-subject results from the Dice loss and
the Dice + CE loss across 56 test volumes. The analysis
demonstrated that the composite Dice + CE loss resulted
in a statistically highly significant improvement across all
primary evaluation metrics. Specifically, the gains in
Global Accuracy (p < 0.001), Mean Accuracy (p < 0.001),
and Mean IoU (p < 0.001) were all found to be highly
significant, strongly supporting the claim that combining
the cross-entropy term with the Dice term provides a
robust enhancement to the network's segmentation
capability. Full statistical results, including T-statistics and

Table 5. Paired T-test results comparing segmentation perfor-
mance between Dice Loss and Dice + CE Loss (N=56).

Metric p-value Significance
Global Accuracy 223x10* p <0.001%**
Mean Accuracy 1.08x10°® p <0.001***

Mean IOU 1.87x 107 p <0.001%**

precise p-values, are detailed in Table 5.

4. Discussion

This study explored how different loss functions
influence model performance and learning characteristics
in brain tissue segmentation using a large-scale MRI
dataset. By comparing pure Dice loss with the combined
Dice + Cross-Entropy (Dice+CE) loss, we confirmed that
loss function design is a key factor balancing segmentation
accuracy and boundary recognition. Overall, Dice+CE
achieved higher accuracy and IoU, showing clear
improvements in tissues with ambiguous boundaries (e.g.,
skin, skull, cerebrospinal fluid (CSF), and gray matter
(GM)). In contrast, for large and continuous structures
like white matter (WM), Dice loss performed slightly
better, suggesting a close link between loss function
characteristics and tissue morphological complexity.

Dice+CE outperformed Dice alone in both IoU and
Accuracy, mainly because the two losses complement
each other [16]. Pointed out that Dice loss suffers from
unstable gradients due to small denominators in gradient
computation [17]. Noted that Cross-Entropy (CE) loss can
be dominated by the background class in medical images,
making it less suitable for class imbalance [16]. Demon-
strated that combining Dice and CE produced higher
segmentation scores (DSC 0.672) than either Dice (0.638)
or CE (0.601) alone. Our findings align with these results,
confirming that Dice+CE achieves superior segmentation
performance.

The Dice+CE loss showed marked improvement in
tissues with fuzzy or low-contrast boundaries, such as
skin, skull, CSF, and GM [18]. Reported that standard
Dice loss, focusing mainly on overlap, can cause vanish-
ing gradients near fine boundaries, leading to local
inaccuracies [19, 20]. Found that CE provides stronger
classification signals for difficult boundary voxels ignored
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by Dice, improving precision. This complementary effect
likely allowed pixel-level recovery in thin, irregular
structures like skin, enhancing both IoU and accuracy
[21]. Argued that CE mitigates output imbalance defined
by false positives/negatives, which may explain the
reduced leakage errors at skull-skin interfaces. Moreover,
the combination of Dice’s global shape consistency and
CE’s local precision likely reduced noisy islands in CSF
and GM, improving segmentation reliability. Thus, the
study verified that Dice+CE is advantageous for fine-
grained brain segmentation.

White matter (WM) performed slightly better with pure
Dice loss [22]. Analyzed 20 loss functions across six
public datasets and explained that Dice, as a region-based
loss, directly maximizes overlap between predictions and
ground truth, aligning well with the risk-minimization
principle [23]. Because Dice was originally proposed for
white-matter lesion segmentation, it effectively captures
size and localization agreement rather than pixel accuracy
[23, 24]. Described CE as measuring voxel-wise prob-
ability differences, adding a second optimization target.
Therefore, while Dice+CE improves precision for small
or sparse objects, pure Dice optimized solely for regional
overlap retains a slight advantage for large, continuous
regions like WM.

This study has several limitations. Using automatically
generated label maps (SimNIBS charm and FastSurfer)
may reduce boundary accuracy and anatomical alignment,
requiring expert correction in some cases. No data
augmentation was applied, limiting generalization across
posture, head size, noise, and scanner variation. More-
over, the experiments focused on a single 3D U-Net
architecture, making it unclear whether the observed
effects are architecture-specific or general. Performance
evaluation relied on quantitative metrics and did not
include expert or clinical assessments.

In conclusion, using over 500 MRI samples, this study
confirmed that the choice of loss function significantly
affects model performance in brain tissue segmentation.
The combined Dice+CE loss yielded higher accuracy and
IoU, particularly improving segmentation of tissues with
unclear boundaries, while pure Dice slightly outperformed
in large, continuous structures. These results indicate that
combining Dice’s global shape optimization with CE’s
voxel-level precision offers a balanced approach, sug-
gesting that adaptive loss function strategies can enhance
the reliability of MRI segmentation models.

Based on this study, three main directions for future
research are suggested to further enhance model
generalizability, accuracy, and utility.

Firstly, while our study utilizes a large dataset (552

-857 -

volumes) to achieve strong initial generalizability, real-
world clinical deployment demands robustness across
unseen domains (e.g., new scanners or acquisition
protocols), and therefore, future work must focus on
applying advanced data augmentation techniques to
drastically improve Domain Generalization capability.
This involves implementing sophisticated methods like
intensity-based augmentation (simulating noise and
contrast shifts) and realistic elastic deformation, which
introduce simulated spatial and intensity variability into
the training data. By exposing the model to a wider range
of synthetic variations than those present in the original
dataset, we can explicitly train the model to be robust
across different hardware and acquisition settings, thereby
maximizing its stability in diverse clinical environments.

Secondly, enhancing segmentation requires optimizing
the training process beyond the current state. This
includes exploring Boundary-Sensitive Loss Functions
(such as Boundary Loss or Distance Map-based Loss) to
explicitly address and minimize minor inaccuracies at thin
structures and tissue interfaces. Concurrently, architectural
refinement, such as integrating Attention Mechanisms or
deeper residual connections into the 3D U-Net, is
necessary to better capture both global context and fine-
grained local details, thus boosting overall accuracy.

Finally, the anatomical segmentation scope must be
expanded. Beyond the current five tissues, future models
should include electrically relevant structures, such as
segmenting the Cerebellum distinctly, and explicitly
modeling ocular structures and air cavities. Most
importantly for high-fidelity head modeling, the single
skull class must be refined into a multi-layered structure
by delineating the compact bone and the inner spongy
bone (Diploe), providing the detailed anatomical pre-
requisites for the most advanced computational simu-
lations.
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