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Accurate brain tissue segmentation is essential for constructing individualized head models in noninvasive

brain stimulation. This study investigated how loss function design influences segmentation performance using

a large dataset of over 500 T1-weighted MRIs. A 3D U-Net was trained to segment the skin, skull, cerebrospinal

fluid (CSF), gray matter (GM), and white matter (WM) using either Dice or combined Dice + Cross-Entropy

(Dice+CE) losses. Quantitative results showed that Dice+CE achieved higher overall accuracy (0.8577 vs.

0.8550) and mean IoU (0.2863 vs. 0.2716), with notable improvements in low-contrast tissues such as skin, skull,

CSF, and GM. WM slightly favored Dice due to its large and homogeneous structure. Qualitative analysis

indicated clearer tissue boundaries and fewer misclassifications with Dice+CE. These findings demonstrate that

combining Dice and Cross-Entropy losses enhances segmentation accuracy and provide evidence for optimizing

brain tissue segmentation model performance.

Keywords : brain tissue segmentation, personalized neuromodulation, electro-magnetic stimulation, magnetic reso-

nance imaging, 3D U-Net

1. Introduction

Recent advances in non-invasive brain stimulation (e.g.,

transcranial electric stimulation) emphasize personalized

approaches to improve clinical reproducibility, reduce

inter-subject variability and tailor stimulation to individual

neuroanatomy. Personalized stimulation requires that the

head model accurately reflects an individual’s anatomical

structures, which in turn depends on precise tissue

segmentation of three-dimensional images such as MRI

and CT. Segmentation is the first step in constructing

computational head models for electric-field simulations.

it extracts key tissues including the scalp, skull, cerebro-

spinal fluid (CSF), grey matter and white matter from

structural MRI or CT images [1]. Accurate segmentation

is assessed using metrics such as the Dice similarity

coefficient and the modified Hausdorff distance [1], and

errors propagate through subsequent modelling stages.

Single-modality images may struggle to differentiate

certain boundaries; for example, a T1-weighted MRI

separates soft tissues well but makes it difficult to

distinguish the Skull, CSF interface. T2-weighted MRI

highlights CSF, while CT excels at delineating bone.

Therefore, combining T1 with T2 or CT images improves

skull and CSF segmentation but requires careful

co-registration [2]. In tumour segmentation tasks, multi-

modal MRI sequences (T1, T2, contrast-enhanced T1 and

FLAIR) provide complementary information that improves

segmentation accuracy compared with single-modality

images [3].

Accurate delineation of anatomical structures directly

influences diagnostic and therapeutic precision and

enables time-efficient workflows. Early clinical practice

relied on manual segmentation, which requires clinicians

to outline structures on every slice (often hundreds of

images) and is therefore labour-intensive, time-consuming

and subject to inter and intra-observer variability [4].

Classical automated methods such as thresholding,
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edge-based and region-growing algorithms or atlas

registration improved efficiency but remained sensitive to

noise and intensity inhomogeneity and often produced

unstable results [5]. Moreover, traditional methods

struggle with small tissues and ambiguous boundaries.

Small organs occupy only a tiny fraction of the image

volume and have unclear boundaries, leading to poor

segmentation performance [5].

Deep learning based segmentation, particularly con-

volutional neural networks (CNNs), has become the

dominant approach in recent years. Three dimension(3D)

U-Net and its variants use encoder–decoder architectures

with skip connections to capture both contextual and

fine-grained features and have become the de-facto

standard for volumetric CT and MRI segmentation across

a wide range of tasks [5]. Compared with manual or

classical algorithms, CNN-based segmentation offers

superior accuracy and efficiency, substantially reducing

processing time and allowing real-time or near-real-time

applications. In the context of non-invasive brain

stimulation, precise segmentation of tissues such as bone,

fat and air spaces is essential because the electrical

conductivity of each tissue influences current flow;

detailed segmentation also enables modelling of small

structures (e.g., blood vessels) that were previously

ignored or required contrast agents [1]. Nevertheless,

challenges remain to accurately segmenting tiny struc-

tures and low-contrast boundary regions, accommodating

anatomical variability across individuals, choosing

between single or multi-modal imaging inputs, improving

model performance while minimizing computation time

and memory consumption, and coping with scanner

differences or patient motion [5]. Addressing these issues

remains an active area of research.

In current practice, many models segment white matter,

grey matter, CSF, bone, fat/muscle and ocular structures

using single images (T1, T2 or CT) or combining MRI

with CT. Among them, 3D U-Net based models are

widely used owing to their strong performance [5]. A

critical factor in these models is the loss function, which

guides how the network learns from segmentation errors.

Popular choices include the Dice loss, the cross-entropy

loss and its combinations. The Dice loss maximizes

overlap between predicted and reference regions but may

be unstable or insensitive to boundary errors. The

cross-entropy loss treats segmentation as voxel-wise

classification but can be dominated by majority classes.

Combining the two losses leverages complementary

strengths and mitigates class imbalance. For example,

researchers have defined a composite loss as the sum of

Dice and cross-entropy losses and reported robust

performance across diverse class distributions [6].

Another study noted that cross-entropy alone was

influenced by mainstream pixels and that adding the Dice

term stabilized training and improved segmentation

accuracy [7]. In a recent multimodal brain-tumour

segmentation model (ResSAXU-Net), a fusion loss

combining Dice and cross-entropy losses helped address

network convergence and data imbalance, yielding Dice

similarity coefficients above 0.95 across tumor subregions

[8]. These studies suggest that combining multiple loss

functions can improve segmentation performance, however

most prior works have focused on specific lesions or

limited datasets. There is still a lack of systematic, large-

scale analyses investigating how the choice of loss

function affects overall segmentation accuracy and

boundary awareness in general MRI based brain tissue

segmentation. In addition, existing studies have primarily

concentrated on internal brain structures such as GM,

WM and CSF [9], while cases that perform simultaneous

segmentation of the entire head including skin and skull

using only MRI data remain very limited [10]. 

Therefore, in this study, we applied a large-scale MRI

dataset and a 3D U-Net architecture to compare the

effects of the Dice loss function and the combined Dice +

Cross-Entropy loss function on the segmentation of major

brain tissues, including skin, skull, CSF, GM, and WM.

Through this comparison, we aimed to analyze differ-

ences in segmentation accuracy and boundary recognition

across tissues depending on the loss function and to

provide insights for optimizing brain tissue segmentation

model performance.

2. Methods

Model training used the publicly available IXI dataset

[11]. The cohort comprises approximately 582 healthy

volunteers and includes multiple MRI sequences (T1, T2,

Table 1. Information of publicly available IXI dataset.

Parameter Description

Number of subjects 582 healthy volunteers

Imaging sequences T1, T2, Proton Density, MRA, DTI

Scanner details

Hammersmith Hospital: Philips 3T

Guy’s Hospital: Philips 1.5T

Institute of Psychiatry: GE 1.5T

Image Data format NIfTI-1

Original Image size 256 × 256 × 150

Spatial resolution

(Voxel size)
0.96 × 0.96 × 1.2 mm3

Data used in this study 552 T1-weighted volumes
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Proton Density weighted, MRA, and DTI). Scans were

acquired on three scanners across London sites: Hammer-

smith Hospital (Philips 3T), Guy’s Hospital (Philips

1.5T), and the Institute of Psychiatry (GE 1.5T) and are

distributed in NIfTI-1 format. Native volumes measure

256 × 256 × 150 voxels with a voxel size of 0.96 × 0.96

× 1.2 mm³. In this study, only T1-weighted images were

considered, and a total of 552 T1 volumes were used for

model development. Information about the detailed MRI

image data set is shown in Table 1.

2.1. Data Labeling

For personalized neuromodulation, five tissue classes

were segmented: skin, skull, cerebrospinal fluid (CSF),

gray matter (GM), and white matter (WM). Training

labels were generated with an automatic pipeline built

from open-source tools. Extracranial tissues and CSF

were obtained using the atlas-based charm workflow in

SimNIBS v4.5 [12], which applies deformable atlas

registration to produce subject specific label maps.

Parenchymal tissues (GM, WM) were derived with

FastSurfer [13], a CNN-based neuroanatomical seg-

mentation framework, from which GM and WM masks

were extracted. The cerebellum was not treated as a

separate class and was merged into GM or WM as

appropriate. 

Fig. 1. (Color online) Labeling workflow with Fastsurfer & SImNIBS.

Fig. 2. Labeled images which is randomly sampled from 552 MRI dataset.
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Figure 1 illustrates the workflow: FastSurfer provides

GM/WM masks, SimNIBS-charm provides skin, skull,

CSF masks, and the outputs are fused to obtain the final

label map. For quality control, ten labeled volumes were

randomly sampled for visual inspection. Representative

examples are shown in Fig. 2. Class indices for each

tissue are summarized in the accompanying Table 2.

2.1.1. Automated Post-processing.

It is important to note that no manual corrections or

human editing were applied to the labels. However, to

refine the quality of the automatically fused labels, a

targeted automated post-processing step was implemented

using MATLAB. This procedure was specifically applied

to the skin and skull tissue classes to mitigate artifacts

from the initial automated segmentation tools. For the

skin mask, a connected-component analysis was performed

to identify and retain only the largest connected structure,

effectively removing smaller, isolated noise components.

Similarly, for the skull mask, noise reduction was

achieved by applying a volume threshold, where all

connected components consisting of fewer than 70 voxels

were programmatically removed. This automated cleaning

ensured cleaner segmentation boundaries for these complex

tissues prior to model training.

2.2. Data preprocessing

Model development was conducted in MATLAB

R2024a. Prior to training, all input data underwent

preprocessing, performed entirely within the MATLAB

environment. No data augmentation was applied during

either the training or testing phases.

2.2.1. Intensity normalization

All native T1-weighted MRI volumes were min–max

normalized to the [0,1] range prior to training to reduce

inter-scan intensity variability, improve numerical stability,

and avoid on-the-fly scaling (thereby lowering GPU

memory load). Because raw MR intensities vary with

acquisition settings and hardware, this preprocessing step

was applied uniformly across the dataset to mitigate

distributional shifts and support better generalization.

Min–max normalization was computed as:

(1)

where I(X, Y, Z) denotes the original voxel intensity at

location (X, Y, Z), and Imin and Imax are the minimum and

maximum intensities within the volume, respectively.

2.2.2. Spatial preprocessing (Image Resizing and Pad-

ding)

All T1-weighted MRI volumes were resampled to an

isotropic voxel size of 1×1×1 mm³ to harmonize spatial

resolution across datasets. Each volume was then

standardized to a uniform input shape by zero-padding to

256×256×256 voxels, yielding consistent dimensions

across the axial, coronal, and sagittal planes. This

procedure minimizes inter-scan spatial mismatch and

enforces a consistent input format for both model training

and downstream deployment. 

2.3. Network architecture: 3D U-Net

A three-dimensional(3D) U-Net was implemented to

achieve high-fidelity tissue segmentation in volumetric

MRI [14]. The model extends the canonical 2D U-Net to

3D, thereby preserving through-slice spatial context that

is essential for analyzing voxelwise volumes. The

network follows an encoder–decoder topology: the

encoder stacks 3D convolutions with batch normalization

and ReLU activations, interleaved with max-pooling for

hierarchical feature abstraction. The decoder employs

transposed up-convolutions and skip connections to

progressively restore spatial resolution while retaining

fine-grained localization. Skip connections concatenate

shallow, spatially precise features with deeper, semantically

rich representations, improving delineation of small

structures and ambiguous boundaries.

Input volumes were partitioned into 64×64×64 voxel

patches sampled from the preprocessed 256×256×256 T1-

weighted images [15]. The segmentation target comprised

six classes: background, skin, skull, cerebrospinal fluid

(CSF), gray matter (GM), and white matter (WM). A

voxelwise softmax at the output layer produced class

probabilities. Two training objectives were examined:

Dice loss and a composite Dice–cross-entropy loss,

enabling direct comparison of their effects on segmentation

performance.

Table 2. Label information: label indices for background, skin,
skull, cerebrospinal fluid (CSF), gray matter (GM), and white
matter (WM).

Tissue Labeling Number

Background 0

Skin 1

Skull 2

CSF 3

Gray Matter 4

White Matter 5
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The 3D U-Net backbone affords greater through-slice

continuity and volumetric precision than 2D architectures,

which is advantageous for delineating ambiguous

boundaries and small structures in medical images.

Accordingly, a 3D U-Net was trained for MRI tissue

segmentation, and performance differences attributable to

the loss formulation were systematically evaluated. The

network configuration and input strategy are illustrated in

Fig. 3.

2.4. Training configuration

A patch-based 3D U-Net was trained on 552 T1-

weighted MRI volumes. Subjects were partitioned into

training/validation/test sets in a 7:2:1 ratio (386/110/56),

ensuring no subject overlap across splits. Each volume

was preprocessed to 256×256×256 voxels, from which

cubic input patches of 64×64×64 voxels were uniformly

sampled. To mitigate class imbalance, a center-voxel label

constraint was imposed so that sampled patches were

evenly distributed across background, skin, skull, CSF,

GM, and WM [15]. Training was executed on a work-

station equipped with two Intel Xeon Gold 6526Y CPUs,

four NVIDIA RTX 4000 Ada GPUs (20 GB each total

GPU memory 80 GB), and 2 TB system RAM (32×64

GB RDIMMs). Optimization used Adam with an initial

learning rate of 1×10⁻⁵ and a mini-batch size of 24. For

each epoch, 24 patches were drawn per volume from the

training set; validation was performed every 50 iterations

to monitor convergence and select checkpoints. Two loss

formulations were evaluated: (i) pure Dice loss and (ii) a

composite Dice+cross-entropy objective. For each loss,

models were trained for 30 and 50 epoch to assess the

effect of training duration on performance. The learning

options referenced above are summarized and presented

in Table 3.

2.5. Evaluation metrics

The effect of the loss function on MRI tissue-

segmentation performance was evaluated using multiple

metrics: global accuracy, per-class accuracy, mean

accuracy, the intersection over union (IoU), and per-class

IoU. Definitions of these metrics are provided below.

2.5.1. Global Accuracy/Accuracy/Mean Accuracy

Accuracy quantifies the proportion of correctly classi-

fied voxels among all voxels. Global accuracy evaluates

this quantity over the entire segmentation irrespective of

class, whereas per-class accuracy is computed separately

for each class using the same definition. Let TPc denote

the number of voxels correctly assigned to class C, FPc

the number of voxels incorrectly predicted as class C, and

FNc the number of voxels that truly belong to class C but

were predicted otherwise. Then

Fig. 3. (Color online) Patch-based 3D U-Net for MRI tissue segmentation. From each preprocessed T1-weighted volume
(256×256×256), cubic patches (64×64×64) are sampled as inputs.

Table 3. Comparative Training Setup: Dice-only vs. Hybrid
(Dice+CE) Losses.

Training Option Baseline (Dice) Hybrid (Dice+CE)

Model type 3D U-Net

Data Set
552 T1 MRI Image(3D voxel image)

7(Training/386) : 2(Validation/110) : 1(Test/56)

Optimizer Adam

learning rate 1e-5

Validation Frequency 50

Mini BatchSize 24

Input Size 64 × 64 × 64

Epoch 30 50

Loss function Dice Loss
Dice + Cross-Entropy 

Loss
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(2)

Per-class accuracy denotes, for a given class C, the

proportion of voxels correctly identified as C:

(3)

This metric indicates how accurately the model

recognizes voxels of class C. The mean accuracy is

defined as the unweighted average of per-class accuracies

across all C classes:

(4)

2.5.2. IOU/Mean IOU

The intersection over union (IoU), also known as the

Jaccard index, quantifies the degree of overlap between

the predicted and reference regions. At the voxel level for

class cc, let TPC, FPC , and FNC denote the numbers of

true-positive, false-positive, and false-negative voxels,

respectively. The classwise IoU is defined as:

(5)

The mean IoU is the unweighted average across

all CC classes:

(6)

2.6. Statistical Analysis

To rigorously determine whether the observed differ-

ences in segmentation performance between the single

Dice loss and the composite Dice + Cross-Entropy (CE)

loss were statistically meaningful, a formal statistical

analysis was conducted on the per-subject metrics

obtained from the 56 test volumes. Since both loss

functions were applied to the exact same set of subjects,

the performance comparison constitutes a paired data

scenario. Consequently, a paired two-sample t-test was

chosen to assess the difference in mean performance for

all key metrics, including Global Accuracy, Mean Dice

Score, and Per-class IoU. This test is appropriate for

determining if the mean difference between the paired

observations is significantly non-zero, provided the

differences are approximately normally distributed. The

analysis aimed to test the following hypotheses: the Null

Hypothesis H0 stated that the mean performance difference

between the two loss functions is zero (i.e., there is no

significant difference); conversely, the Alternative Hypo-

thesis (H1) stated that the mean performance difference is

not zero (i.e., there is a statistically significant difference).

All statistical calculations were performed using the

MATLAB R2024a environment. Consistent with conven-

tional statistical practice in medical imaging research, a

result was deemed statistically significant if the P-value

was less than 0.05 (p < 0.05).

3. Results

Performance was compared between a Dice-only model

and a hybrid Dice+cross-entropy (Dice+CE) model on a

held-out test set of 56 T1-weighted MRI volumes. Global

accuracy exceeded 0.85 for both models, with a marginal

gain for Dice+CE (0.8577) over Dice-only (0.855; Δ =

+0.0027).

Per-class accuracies showed broadly consistent

improvements for Dice+CE in non-background tissues.

Background accuracy was essentially unchanged across

models. In contrast, Dice+CE yielded higher accuracies

for skin (0.1479 vs. 0.0812; Δ = +0.0667), skull (0.2430

vs. 0.1925; Δ = +0.0505), CSF, and GM. White matter

presented an exception, where the Dice-only model

performed better (0.5084 vs. 0.4779; Δ = -0.0305).

Overall, the hybrid loss offered small gains in global

accuracy and more consistent improvements across most

tissue classes, with a trade-off observed in WM.

3.1. Intersection-over-Union (IoU)

Class-wise IoU generally favored the hybrid Dice+CE

model over the Dice-only baseline. Notable gains were

observed for skin (0.090 vs. 0.0609; Δ =+0.0291$), skull

(0.141 vs. 0.1104; Δ = +0.0306), CSF (0.064 vs. 0.0562;

Δ = +0.0078), and GM (0.2082 vs. 0.1915; Δ = +0.0167),

with a modest improvement also seen for background.

White matter was the only exception, where performance

was essentially unchanged, with a slight advantage for

Dice-only (0.3129 vs. 0.311; Δ = -0.0019). Overall, IoU

results corroborate the accuracy findings, indicating more

consistent tissue-wise gains from the composite loss. 

Classwise IoU likewise favored the hybrid Dice+CE

loss over the Dice-only baseline. Improvements were

observed for skin (0.090 vs. 0.0609 Δ=+0.0291), skull

(0.141 vs. 0.1104 Δ=+0.0306), CSF (0.064 vs. 0.0562

Δ=+0.0078), and GM (0.2082 vs. 0.1915 Δ=+0.0167),

along with a modest gain for background. White matter



Journal of Magnetics, Vol. 30, No. 4, December 2025  855 

was the sole exception: the two models performed

similarly, with a slight advantage for Dice-only (0.3129

vs. 0.311 Δ=−0.0019). Overall, IoU results are consistent

with the accuracy analysis, indicating more reliable

tissue-wise segmentation from the composite loss.

Taken together, both the mean accuracy (0.3806 vs.

0.3620) and the mean IoU (0.2863 vs. 0.2716) were

higher for the hybrid Dice+CE loss than for Dice-only,

indicating an overall improvement in segmentation

performance. Gains were particularly pronounced for

tissues with ambiguous boundaries (e.g., skin, skull, CSF,

and GM), where the composite loss yielded more reliable

delineation. Summary values for each evaluation metric

are reported in Table 4.

Qualitative comparison was performed on four randomly

sampled test volumes in Fig. 4. With Dice-only training,

skin–skull interfaces frequently exhibited boundary

ambiguity and cross-class leakage. Applying the hybrid

Table 4. Comparison of Segmentation Performance Metrics Between Dice Loss and Dice–Cross-Entropy Loss.

Tissue / Metric
Accuracy

(Dice)

Accuracy

(Dice+CE)

IOU

(Dice)

IOU

(Dice+CE)

Back Ground 0.9557 0.9545 0.8974 0.9035

Skin 0.0812 0.1479 0.0609 0.09

Skull 0.1925 0.243 0.1104 0.141

CSF 0.094 0.1045 0.0562 0.064

GM 0.3405 0.3557 0.1915 0.2082

WM 0.5084 0.4779 0.3129 0.311

Global Accuracy 0.855 ± 0.0178 0.8577 ± 0.0213 - -

Mean Accuracy 0.362 ± 0.0581 0.3806 ± 0.0745 - -

Mean IOU - - 0.2716 ± 0.0468 0.2863 ± 0.0639

Fig. 4. (Color online) Qualitative comparison of tissue segmentation on four randomly selected test subjects (representative axial,
coronal, and sagittal slices). Left: model trained with Dice loss only. Right: model trained with the hybrid Dice+cross-entropy
(Dice+CE) loss.
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Dice+CE loss reduced these errors; although some edge

regions remained imperfect, the overall delineation was

more stable and accurate than with Dice alone. For CSF,

the Dice-only model occasionally produced comparatively

clean contours in extracerebral spaces, but in gray and

white matter the same model showed prominent mis-

segmentation—extending labels into anatomically unrelated

regions and creating spurious islands. These errors were

substantially attenuated under Dice+CE, yielding more

faithful GM/WM parcellation. In sum, the hybrid loss

produced superior qualitative segmentations, particularly

in boundary recognition and region-specific precision,

while retaining comparable performance in easier com-

partments.

3.2. Statistical Significance of Performance Gains.

To confirm the robustness of the observed performance

improvements, a paired two-sample t-test was conducted

comparing the per-subject results from the Dice loss and

the Dice + CE loss across 56 test volumes. The analysis

demonstrated that the composite Dice + CE loss resulted

in a statistically highly significant improvement across all

primary evaluation metrics. Specifically, the gains in

Global Accuracy (p < 0.001), Mean Accuracy (p < 0.001),

and Mean IoU (p < 0.001) were all found to be highly

significant, strongly supporting the claim that combining

the cross-entropy term with the Dice term provides a

robust enhancement to the network's segmentation

capability. Full statistical results, including T-statistics and

precise p-values, are detailed in Table 5.

4. Discussion

This study explored how different loss functions

influence model performance and learning characteristics

in brain tissue segmentation using a large-scale MRI

dataset. By comparing pure Dice loss with the combined

Dice + Cross-Entropy (Dice+CE) loss, we confirmed that

loss function design is a key factor balancing segmentation

accuracy and boundary recognition. Overall, Dice+CE

achieved higher accuracy and IoU, showing clear

improvements in tissues with ambiguous boundaries (e.g.,

skin, skull, cerebrospinal fluid (CSF), and gray matter

(GM)). In contrast, for large and continuous structures

like white matter (WM), Dice loss performed slightly

better, suggesting a close link between loss function

characteristics and tissue morphological complexity.

Dice+CE outperformed Dice alone in both IoU and

Accuracy, mainly because the two losses complement

each other [16]. Pointed out that Dice loss suffers from

unstable gradients due to small denominators in gradient

computation [17]. Noted that Cross-Entropy (CE) loss can

be dominated by the background class in medical images,

making it less suitable for class imbalance [16]. Demon-

strated that combining Dice and CE produced higher

segmentation scores (DSC 0.672) than either Dice (0.638)

or CE (0.601) alone. Our findings align with these results,

confirming that Dice+CE achieves superior segmentation

performance.

The Dice+CE loss showed marked improvement in

tissues with fuzzy or low-contrast boundaries, such as

skin, skull, CSF, and GM [18]. Reported that standard

Dice loss, focusing mainly on overlap, can cause vanish-

ing gradients near fine boundaries, leading to local

inaccuracies [19, 20]. Found that CE provides stronger

classification signals for difficult boundary voxels ignored

Fig. 5. (Color online) Comparison of Segmentation Accuracy Metrics between Dice Loss and Dice + Cross-Entropy Loss on 56
Test dataset.

Table 5. Paired T-test results comparing segmentation perfor-
mance between Dice Loss and Dice + CE Loss (N=56).

Metric p-value Significance

Global Accuracy 2.23 x 10-4 p < 0.001***

Mean Accuracy 1.08 x 10-8 p < 0.001***

Mean IOU 1.87 x 10-7 p < 0.001***
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by Dice, improving precision. This complementary effect

likely allowed pixel-level recovery in thin, irregular

structures like skin, enhancing both IoU and accuracy

[21]. Argued that CE mitigates output imbalance defined

by false positives/negatives, which may explain the

reduced leakage errors at skull–skin interfaces. Moreover,

the combination of Dice’s global shape consistency and

CE’s local precision likely reduced noisy islands in CSF

and GM, improving segmentation reliability. Thus, the

study verified that Dice+CE is advantageous for fine-

grained brain segmentation.

White matter (WM) performed slightly better with pure

Dice loss [22]. Analyzed 20 loss functions across six

public datasets and explained that Dice, as a region-based

loss, directly maximizes overlap between predictions and

ground truth, aligning well with the risk-minimization

principle [23]. Because Dice was originally proposed for

white-matter lesion segmentation, it effectively captures

size and localization agreement rather than pixel accuracy

[23, 24]. Described CE as measuring voxel-wise prob-

ability differences, adding a second optimization target.

Therefore, while Dice+CE improves precision for small

or sparse objects, pure Dice optimized solely for regional

overlap retains a slight advantage for large, continuous

regions like WM.

This study has several limitations. Using automatically

generated label maps (SimNIBS charm and FastSurfer)

may reduce boundary accuracy and anatomical alignment,

requiring expert correction in some cases. No data

augmentation was applied, limiting generalization across

posture, head size, noise, and scanner variation. More-

over, the experiments focused on a single 3D U-Net

architecture, making it unclear whether the observed

effects are architecture-specific or general. Performance

evaluation relied on quantitative metrics and did not

include expert or clinical assessments.

In conclusion, using over 500 MRI samples, this study

confirmed that the choice of loss function significantly

affects model performance in brain tissue segmentation.

The combined Dice+CE loss yielded higher accuracy and

IoU, particularly improving segmentation of tissues with

unclear boundaries, while pure Dice slightly outperformed

in large, continuous structures. These results indicate that

combining Dice’s global shape optimization with CE’s

voxel-level precision offers a balanced approach, sug-

gesting that adaptive loss function strategies can enhance

the reliability of MRI segmentation models.

Based on this study, three main directions for future

research are suggested to further enhance model

generalizability, accuracy, and utility.

Firstly, while our study utilizes a large dataset (552

volumes) to achieve strong initial generalizability, real-

world clinical deployment demands robustness across

unseen domains (e.g., new scanners or acquisition

protocols), and therefore, future work must focus on

applying advanced data augmentation techniques to

drastically improve Domain Generalization capability.

This involves implementing sophisticated methods like

intensity-based augmentation (simulating noise and

contrast shifts) and realistic elastic deformation, which

introduce simulated spatial and intensity variability into

the training data. By exposing the model to a wider range

of synthetic variations than those present in the original

dataset, we can explicitly train the model to be robust

across different hardware and acquisition settings, thereby

maximizing its stability in diverse clinical environments.

Secondly, enhancing segmentation requires optimizing

the training process beyond the current state. This

includes exploring Boundary-Sensitive Loss Functions

(such as Boundary Loss or Distance Map-based Loss) to

explicitly address and minimize minor inaccuracies at thin

structures and tissue interfaces. Concurrently, architectural

refinement, such as integrating Attention Mechanisms or

deeper residual connections into the 3D U-Net, is

necessary to better capture both global context and fine-

grained local details, thus boosting overall accuracy.

Finally, the anatomical segmentation scope must be

expanded. Beyond the current five tissues, future models

should include electrically relevant structures, such as

segmenting the Cerebellum distinctly, and explicitly

modeling ocular structures and air cavities. Most

importantly for high-fidelity head modeling, the single

skull class must be refined into a multi-layered structure

by delineating the compact bone and the inner spongy

bone (Diploe), providing the detailed anatomical pre-

requisites for the most advanced computational simu-

lations.
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