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Low-dose computed tomography (CT) is essential for minimizing patient radiation exposure; however,

increased noise often leads to image degradation and may adversely affect diagnostic accuracy. In this study, we

propose an optimized CT image restoration method that integrates wavelet transform with the U-Net

architecture. The proposed approach decomposes the input image into low- and high-frequency components,

selectively removes noise from the high-frequency bands, and reconstructs the image while preserving

structural information in the low-frequency bands. The reconstructed components are subsequently refined

through the U-Net for final denoising. Performance was quantitatively evaluated using PSNR and SSIM,

showing improvements in the average PSNR by 10.3% and average SSIM by 14.7%, respectively, compared to

the conventional U-Net. These results demonstrate that the wavelet-based U-Net model offers superior

denoising performance while maintaining image resolution and anatomical structure, suggesting it as an

effective approach for improving the quality of low-dose CT images.
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1. Introduction

Computed tomography (CT) has become an essential

imaging modality in the field of radiological diagnosis

due to its high spatial resolution and diagnostic accuracy.

It is also widely utilized in routine health examinations

[1]. The clinical value of CT imaging lies in its ability to

accurately detect lesions and guide appropriate treatment

planning. However, with the increasing use of low-dose

CT (LDCT) to minimize patient radiation exposure,

severe noise is often introduced into the images. This

noise degrades image quality and negatively affects

diagnostic accuracy and lesion identification [2].

To address this issue, effective denoising techniques are

required. In recent years, deep learning-based Artificial

Intelligence (AI) technologies have rapidly advanced in

the field of medical imaging, drawing attention as novel

approaches for image restoration and enhancement [3].

Furthermore, Magnetic Resonance Imaging (MRI), which,

unlike CT, does not rely on ionizing electromagnetic

radiation but instead utilizes strong magnetic fields and

radiofrequency waves, serves as a non-invasive modality

that provides superior soft-tissue contrast and comple-

mentary diagnostic information to CT [4, 5]. While both

imaging modalities possess high diagnostic value,

challenges such as radiation exposure in CT and increased

noise in LDCT remain to be addressed.

Representative deep learning models applied for CT

image denoising include Convolutional Neural Networks

(CNNs) and Generative Adversarial Networks (GANs).

Among these, the CNN-based U-Net model is the most

widely used in the medical image restoration domain [6,

7]. The U-Net adopts an encoder-decoder-based auto-

encoder structure optimized for effective feature extraction

and restoration, showing excellent performance in CT

image denoising [8]. However, most deep learning-based

denoising approaches, including the conventional U-Net,

are limited in that they may lead to the loss of fine

structural details or cause blurring effects in images with

complex anatomical structures. Therefore, these limitations

highlight the necessity of developing advanced denoising

strategies to preserve both visual clarity and anatomical
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fidelity in LDCT imaging.

Recent research has proposed various deep learning-

based restoration techniques for CT images, with CNN-

based models actively explored due to their advantages in

structural preservation. Kang et al. [9] attempted to

enhance LDCT image quality using a residual learning-

based CNN, while Chen et al. [10] emphasized natural

texture restoration through a GAN-based framework.

Additionally, Zhang et al. [11] proposed a multi-scale

residual learning-based image restoration model utilizing

the MA-Net architecture. However, many of these

approaches still exhibit limitations such as the loss of fine

anatomical structures and blurring, as they focus primarily

on noise removal.

To overcome these limitations, this study proposes a

novel U-Net-based framework that integrates Wavelet

Transform into the network architecture. The wavelet

transform decomposes the input image into low- and

high-frequency components, allowing for effective pre-

servation of structural information while selectively

removing high-frequency noise [12, 13]. The proposed

model aims to achieve a balance between denoising

performance and anatomical structure preservation by

combining the multi-resolution analysis capability of

wavelet transform with the strong restoration ability of U-

Net. The structure of this paper is as follows: Section 2

describes the overall architecture and algorithms of the

proposed wavelet-integrated U-Net model. Section 3

presents the quantitative evaluation results, Section 4

validates the effectiveness of the proposed method

through comparative analysis, and Section 5 discusses the

conclusions and future research directions.

2. Material and Method

2.1. The Wavelet Transform

The wavelet transform is a technique that decomposes

image signals into frequency components, allowing the

analysis of local time-frequency characteristics [14, 15].

As shown in Fig. 1, the original image can be decomposed

into low-frequency components (structural information)

and high-frequency components (edges and noise). In

particular, the low-frequency band (LL) contains the

major anatomical structures, while the high-frequency

bands (LH, HL, HH) include edges, textures, and noise

[16].

Wavelet transforms are categorized into Continuous

Wavelet Transform (CWT) and Discrete Wavelet Trans-

form (DWT) [17]. CWT continuously transforms signals

at various scales and time positions to analyze local

frequency characteristics, providing high time-frequency

resolution. It is defined as follows (1):

(1)

where a is the scale parameter, b is the translation

parameter, and * is the complex conjugate of the mother

wavelet. Smaller scales emphasize high-frequency com-

ponents. CWT provides high time-frequency resolution,

but its continuous nature results in high computational

complexity, excessive memory usage, and coefficient

redundancy [18].

In contrast, DWT limits scale and translation parameters

to discrete binary sequences, reducing computational load

and improving efficiency. DWT is defined as follows (2):

(2)

Here, j and k are the scale and translation parameters,

respectively. As the scale increases, time resolution

decreases and frequency resolution improves, enabling

multi-resolution analysis [19]. Considering both efficiency

and precision, DWT was employed in this study to

separate CT image signals and selectively remove noise

from the high-frequency components.

2.2. Wavelet Mother Function

The Wavelet Mother Function is the foundational

function of the wavelet transform, designed to analyze

local signal characteristics in the time-frequency domain

Fig. 1. Wavelet-Decomposed Frequency Components of the

CT Image (LL, LH, HL, HH Subbands).
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[20]. The mother wavelet generates a wavelet family by

scaling and translating, allowing comprehensive signal

analysis across multiple frequency bands [21].

This study adopts the Daubechies 4 (db4) wavelet

function, which has four vanishing moments and eight

filter coefficients. Four of these represent low-pass filters

for extracting the LL component containing primary

structural information, defined as follows (3):

(3)

The high-pass filter coefficients are derived from the

low-pass coefficients using the following formula (4):

(4)

where N is the filter length. The high pass filter effec-

tively extracts edges, textures, and noise in the image.

Daubechies wavelets are orthogonal and compactly

supported, making them suitable for multi-resolution

analysis and efficient in both DWT and inverse DWT [22,

23].

2.3. Wavelet Threshold Factor Setting

After decomposing the image using Wavelet Transform,

soft thresholding is applied to the high-frequency com-

ponents (LH, HL, HH) to selectively remove noise. This

method suppresses noise by eliminating small, unnecessary

coefficients.

The soft thresholding process is defined by the

following equation (5):

(5)

Here, T denotes the threshold value, and coefficients

less than or equal to T are removed, while coefficients

exceeding T are shrunk by T and preserved. However, to

better reflect the local characteristics of the image, this

study employed an adaptive thresholding scheme. The

threshold value T is generally determined based on

statistical characteristics, as shown in the following

equation (6):

(6)

Where  is the standard deviation of the noise, and n is

the number of wavelet coefficients. This approach is

designed to exclude the possibility of spuriously large

values among numerous coefficients based on prob-

abilistic theory, such as the expected value of the

maximum or the probability of maximum noise, thus

providing a theoretically universal and automated criterion

[24, 25]. However, given the specific nature of medical

image processing, an application-specific threshold setting

is necessary to reflect data peculiarities, such as visual

quality enhancement and noise suppression. Therefore,

the threshold value was determined using the following

empirical formula (7):

(7)

Here, k is the scaling factor, w is the band-level

correction factor, and  is the standard deviation of the

noise. This formula allows for dynamic adjustment of the

threshold based on the distribution characteristics of the

noise and changes in resolution within the image,

enabling effective noise suppression while preserving fine

details [26].

2.4. Image Segmentation

For quantitative evaluation of denoising performance,

this study defined a Region of Interest (ROI) based on

automated segmentation of thoracic and abdominal CT

images [27-29]. After converting DICOM images to

Fig. 2. (Color online) ROI Generation Pipeline for Chest/Abdomen CT Images.
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Hounsfield Units (HU), an initial automatic lung mask

was generated using the lungmask library. If the lung area

was insufficient or absent, an adaptive ROI generation

algorithm was applied. This alternative strategy involved

considering areas with soft tissue HU values (e.g., -1000

to -400 for lung, or 20 to 70 for other soft tissues) to

construct a mask. If all criteria failed, a central soft tissue

mask (-300 to 300 HU) covering 20% to 80% of the

image was generated. Finally, high-density tissues (bone,

HU > 400) were removed, and morphological operations

were applied to secure contiguous ROI. The ROI

generation process is illustrated in Fig. 2.

2.5. Application of Wavelet Transform

In this study, the Wavelet Transform was applied as a

preprocessing step for CT images. As shown in Fig. 3, the

process begins by decomposing the image into low-

frequency components (representing primary structural

information) and high-frequency components (represent-

ing boundary details and noise). The low-frequency

components are preserved, while the high-frequency

components are processed to selectively remove noise

while retaining important boundary information. Finally,

the low-frequency and denoised high-frequency compo-

nents are reconstructed into a single image using the

Inverse Wavelet Transform (IDWT). 

The architecture of the U-Net used in this study is

shown in Fig. 4. This reconstructed image is then used as

the input (256 × 256 × 1) for the U-Net model. The U-

Net consists of an encoding path, a bottleneck layer, and a

decoding path. The encoding path uses two convolutional

blocks and pooling layers to progressively compress the

features and extract high-level representations (32 to 64

channels), halving the spatial resolution. The bottleneck

Fig. 3. (Color online) Structural Diagram Representing the Wavelet Transform Process.

Fig. 4. (Color online) Architecture of the U-Net Model for CT Image Denoising.
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layer extracts core information via a 128-channel

convolutional layer. The decoding path restores spatial

resolution (64 to 32 channels) by integrating low-level

features from the encoding path with high-level features

from the bottleneck layer via upsampling and skip

connections. The final output passes through a 1 × 1

convolutional layer with a sigmoid activation function to

generate a single-channel grayscale image for pixel-wise

prediction [30, 31].

2.6. Experimental Data and Hyperparameters

The dataset used in this study is a publicly available CT

image dataset from Kaggle, consisting of 100 Chest/

Abdomen CT DICOM files collected from 100 patients

[32]. The entire dataset was split into 80% for training

and 20% for validation to train the model. The Structural

Similarity Index (SSIM)-based loss function was utilized

for model training. This function quantifies the similarity

between the original and predicted images by compre-

hensively considering the image's brightness, contrast,

and structure. The main hyperparameters of the model

were set as shown in Table 1. The initial learning rate was

set to 0.0001, and the batch size was set to 8. The

Adaptive Moment Estimation (Adam) algorithm was used

as the optimizer. The maximum number of epochs was set

to 100, but Early Stopping was implemented to terminate

training if the validation loss did not improve for more

than 10 consecutive epochs. The Rectified Linear Unit

(ReLU) was used as the activation function, and the

output layer utilized the sigmoid function to reflect the

grayscale characteristics of CT images [33].

3. Result

In this study, to quantitatively evaluate the CT image

noise reduction performance of the proposed Wavelet

Transform-based U-Net model, Low-dose CT (LDCT)

images were simulated by adjusting the standard deviation

of noise () from 0.01 to 0.1 in 0.01 increments. Gaussian

noise corresponding to each standard deviation level was

randomly added to the CT images with the applied ROI,

and the noise reduction performance of each model was

compared and analyzed. Performance evaluation was

Table 1. Main Hyperparameter Settings for Model Training.

Hyperparameter Value/Setting

Learning rate 0.0001

Batch size 8

Optimizer Adam

Epoch 100

Activation function ReLU

Loss function SSIM Loss

Fig. 5. (Color online) Comparison of CT Image Denoising Results Using U-Net, Wavelet+U-Net.
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carried out by comparing the U-Net model with the

Wavelet Transform applied as a preprocessing step

against the conventional U-Net model without it. All

experimental results were quantitatively analyzed based

on mean values. Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index (SSIM) were used as image

reconstruction performance metrics. Generally, a higher

PSNR value indicates superior noise reduction performance,

and an SSIM value closer to 1 signifies higher structural

similarity between the two images [34]. Fig. 5 shows (a)

the reference CT image, (b) the magnified image with

noise applied, and (c) the reconstructed result from the U-

Net model without the Wavelet Transform. Figures (d),

(e), and (f) show the reference CT image, the magnified

image with noise applied, and the reconstructed result

using the U-Net model with the Wavelet Transform,

respectively. Table 2 and Table 3 summarize the PSNR

and SSIM values after noise removal for each model,

confirming that the proposed Wavelet-based U-Net model

generally outperformed the conventional U-Net. Fig. 6

shows the average PSNR and SSIM scores according to

the standard deviation of the noise. The Wavelet Trans-

form-integrated U-Net model consistently exhibited

higher values in both metrics compared to the standalone

conventional U-Net model.

4. Discussion

This study proposed a novel framework that integrates

the Wavelet Transform with the U-Net architecture to

effectively eliminate noise in CT images and overcome

the limitations of conventional deep learning models,

namely the loss of fine anatomical structures and blurring

artifacts. Recognizing that existing deep learning noise

reduction techniques suffer from these drawbacks, we

utilized the multi-resolution analysis capability of the

Wavelet Transform and an adaptive thresholding scheme

in the preprocessing stage. The core factor driving the

Table 2. Comparison of PSNR and SSIM Performance at Dif-

ferent Noise Levels Using a Single U-Net Model.

Noise 

Std

PSNR

(Noisy)

PSNR

(Denoised)

SSIM

(Noisy)

SSIM

(Denoised)

0.01 40.0200 35.0228 0.9226 0.9384

0.02 34.0363 33.9059 0.7669 0.9211

0.03 30.5993 32.8385 0.6150 0.9009

0.04 28.2010 32.0766 0.4937 0.8720

0.05 26.3685 30.9997 0.4025 0.8682

0.06 24.8867 30.2699 0.3342 0.8367

0.07 23.6345 29.1445 0.2824 0.8144

0.08 22.5619 28.3559 0.2424 0.7907

0.09 21.6124 27.9725 0.2109 0.7611

0.10 20.7616 26.9915 0.1857 0.7273

Table 3. Comparison of PSNR and SSIM Performance at Dif-

ferent Noise Levels Using the Wavelet-based U-Net Model.

Noise 

Std

PSNR

(Noisy)

PSNR

(Denoised)

SSIM

(Noisy)

SSIM

(Denoised)

0.01 40.0364 35.8833 0.9226 0.9456

0.02 34.0276 34.9215 0.7668 0.9309

0.03 30.6666 33.7251 0.6149 0.9192

0.04 28.3020 33.3109 0.4938 0.8966

0.05 26.4122 32.5639 0.4024 0.8823

0.06 24.8828 32.0505 0.3341 0.8562

0.07 23.5954 31.4289 0.2824 0.8452

0.08 22.5334 30.3017 0.2423 0.8135

0.09 21.4944 30.0518 0.2109 0.7959

0.10 20.7153 29.1712 0.1857 0.7795

Fig. 6. (Color online) Mean PSNR and SSIM Across Varying

Noise Standard Deviations.
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performance improvement is the Discrete Wavelet

Transform's (DWT) multi-resolution analysis combined

with a selective noise reduction strategy. DWT efficiently

separates the CT image into a low-frequency component

containing structural information and a high-frequency

component containing boundary and noise information. In

this process, the low-frequency component is preserved to

maintain major anatomical structures, while a threshold is

applied only to the high-frequency component, where

noise is concentrated, to suppress the noise. This pre-

processing step effectively and in advance lowers the

noise level of the image input to the U-Net. The

conventional standalone U-Net model must simultane-

ously process both noise and meaningful structural

information in the input image, inevitably leading to

blurring artifacts where boundary and fine texture

information is obscured during the noise reduction

process. In contrast, the proposed model inputs a noise-

reduced image (reconstructed via IDWT) into the U-Net,

allowing U-Net to focus more on structural feature

restoration rather than complex noise suppression. Con-

sequently, the increase in PSNR quantitatively supports

the noise suppression capability, while the enhancement

in SSIM confirms the ability to preserve fine structures.

This demonstrates that the integration of Wavelet

preprocessing effectively addresses the fine detail loss

observed in conventional deep learning denoising, marking

a significant contribution to high-fidelity CT image

reconstruction.

However, this study has the following limitations. First,

the Wavelet Transform and thresholding were performed

as a fixed preprocessing step, separate from the U-Net's

learning process. This hinders end-to-end optimization,

where wavelet coefficients could directly contribute to the

deep learning model's output, leaving room for further

performance improvement. Second, the scaling and

correction factors used for threshold setting were

determined via an empirical formula. This dependence

means that the generalization performance may degrade

when applied to various patient datasets or CT systems

with different noise distributions. To overcome these

limitations, future work plans to introduce a 'learnable

wavelet layer' structure, integrating the Wavelet Transform

as a part of the deep learning network. This will allow the

DWT coefficients to be optimized via backpropagation,

enabling more precise capture of image features. Further-

more, we aim to develop a 'data-driven adaptive thre-

sholding module' that automatically learns and adjusts the

threshold based on the local noise distribution and

structural complexity of the input image, rather than

relying on a fixed empirical threshold, thereby enhancing

the model's generalization capability. Finally, we will

verify the restoration performance against various types

of noise and conduct in-depth comparative analysis with

other state-of-the-art noise reduction models.

5. Conclusion

This study proposed an optimized framework that

combines the Wavelet Transform with U-Net to improve

the performance of existing deep learning-based CT

image reconstruction. Acknowledging the limitations of

deep learning noise reduction methods, such as fine

structure loss and blurring, we utilized the multi-resolution

analysis of the Wavelet Transform and an adaptive

thresholding technique in the preprocessing stage. The

essence of the proposed model is the maximization of the

U-Net's structural feature restoration capability by using

the Discrete Wavelet Transform to decompose the image

into low- and high-frequency components and applying

selective noise removal only to the high-frequency

component where noise is concentrated. Quantitative

evaluation confirmed that the proposed Wavelet-based U-

Net model consistently showed improved PSNR and

SSIM scores across all noise levels compared to the

standalone conventional U-Net model. This demonstrates

that the framework proposed in this study is excellent at

suppressing noise while preserving the image's structural

similarity and fine anatomical information. The findings

of this research have the significance of substantially

contributing to the improvement of CT image quality for

clinical applications.
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