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Low-dose computed tomography (CT) is essential for minimizing patient radiation exposure; however,
increased noise often leads to image degradation and may adversely affect diagnostic accuracy. In this study, we
propose an optimized CT image restoration method that integrates wavelet transform with the U-Net
architecture. The proposed approach decomposes the input image into low- and high-frequency components,
selectively removes noise from the high-frequency bands, and reconstructs the image while preserving
structural information in the low-frequency bands. The reconstructed components are subsequently refined
through the U-Net for final denoising. Performance was quantitatively evaluated using PSNR and SSIM,
showing improvements in the average PSNR by 10.3% and average SSIM by 14.7%, respectively, compared to
the conventional U-Net. These results demonstrate that the wavelet-based U-Net model offers superior
denoising performance while maintaining image resolution and anatomical structure, suggesting it as an
effective approach for improving the quality of low-dose CT images.
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1. Introduction

Computed tomography (CT) has become an essential
imaging modality in the field of radiological diagnosis
due to its high spatial resolution and diagnostic accuracy.
It is also widely utilized in routine health examinations
[1]. The clinical value of CT imaging lies in its ability to
accurately detect lesions and guide appropriate treatment
planning. However, with the increasing use of low-dose
CT (LDCT) to minimize patient radiation exposure,
severe noise is often introduced into the images. This
noise degrades image quality and negatively affects
diagnostic accuracy and lesion identification [2].

To address this issue, effective denoising techniques are
required. In recent years, deep learning-based Artificial
Intelligence (Al) technologies have rapidly advanced in
the field of medical imaging, drawing attention as novel
approaches for image restoration and enhancement [3].
Furthermore, Magnetic Resonance Imaging (MRI), which,

©The Korean Magnetics Society. All rights reserved.
*Corresponding author: Tel: +82-51-320-4274
e-mail: byungdujo@gdsu.dongseo.ac.kr

unlike CT, does not rely on ionizing electromagnetic
radiation but instead utilizes strong magnetic fields and
radiofrequency waves, serves as a non-invasive modality
that provides superior soft-tissue contrast and comple-
mentary diagnostic information to CT [4, 5]. While both
imaging modalities possess high diagnostic value,
challenges such as radiation exposure in CT and increased
noise in LDCT remain to be addressed.

Representative deep learning models applied for CT
image denoising include Convolutional Neural Networks
(CNNs) and Generative Adversarial Networks (GANSs).
Among these, the CNN-based U-Net model is the most
widely used in the medical image restoration domain [6,
7]. The U-Net adopts an encoder-decoder-based auto-
encoder structure optimized for effective feature extraction
and restoration, showing excellent performance in CT
image denoising [8]. However, most deep learning-based
denoising approaches, including the conventional U-Net,
are limited in that they may lead to the loss of fine
structural details or cause blurring effects in images with
complex anatomical structures. Therefore, these limitations
highlight the necessity of developing advanced denoising
strategies to preserve both visual clarity and anatomical
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fidelity in LDCT imaging.

Recent research has proposed various deep learning-
based restoration techniques for CT images, with CNN-
based models actively explored due to their advantages in
structural preservation. Kang er al. [9] attempted to
enhance LDCT image quality using a residual learning-
based CNN, while Chen et al. [10] emphasized natural
texture restoration through a GAN-based framework.
Additionally, Zhang et al. [11] proposed a multi-scale
residual learning-based image restoration model utilizing
the MA-Net architecture. However, many of these
approaches still exhibit limitations such as the loss of fine
anatomical structures and blurring, as they focus primarily
on noise removal.

To overcome these limitations, this study proposes a
novel U-Net-based framework that integrates Wavelet
Transform into the network architecture. The wavelet
transform decomposes the input image into low- and
high-frequency components, allowing for effective pre-
servation of structural information while selectively
removing high-frequency noise [12, 13]. The proposed
model aims to achieve a balance between denoising
performance and anatomical structure preservation by
combining the multi-resolution analysis capability of
wavelet transform with the strong restoration ability of U-
Net. The structure of this paper is as follows: Section 2
describes the overall architecture and algorithms of the
proposed wavelet-integrated U-Net model. Section 3
presents the quantitative evaluation results, Section 4
validates the effectiveness of the proposed method
through comparative analysis, and Section 5 discusses the
conclusions and future research directions.

2. Material and Method

2.1. The Wavelet Transform

The wavelet transform is a technique that decomposes
image signals into frequency components, allowing the
analysis of local time-frequency characteristics [14, 15].
As shown in Fig. 1, the original image can be decomposed
into low-frequency components (structural information)
and high-frequency components (edges and noise). In
particular, the low-frequency band (LL) contains the
major anatomical structures, while the high-frequency
bands (LH, HL, HH) include edges, textures, and noise
[16].

Wavelet transforms are categorized into Continuous
Wavelet Transform (CWT) and Discrete Wavelet Trans-
form (DWT) [17]. CWT continuously transforms signals
at various scales and time positions to analyze local
frequency characteristics, providing high time-frequency
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Fig. 1. Wavelet-Decomposed Frequency Components of the
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CT Image (LL, LH, HL, HH Subbands).

resolution. It is defined as follows (1):

CWT,(a,b) =
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where a is the scale parameter, b is the translation
parameter, and /' is the complex conjugate of the mother
wavelet. Smaller scales emphasize high-frequency com-
ponents. CWT provides high time-frequency resolution,
but its continuous nature results in high computational
complexity, excessive memory usage, and coefficient
redundancy [18].

In contrast, DWT limits scale and translation parameters
to discrete binary sequences, reducing computational load
and improving efficiency. DWT is defined as follows (2):

DWT,(j,k) = [ x(£) -1, (O)dt where 1;,(t) = 2 5p(27¢ — k)
2

Here, j and k are the scale and translation parameters,
respectively. As the scale increases, time resolution
decreases and frequency resolution improves, enabling
multi-resolution analysis [19]. Considering both efficiency
and precision, DWT was employed in this study to
separate CT image signals and selectively remove noise
from the high-frequency components.

2.2. Wavelet Mother Function

The Wavelet Mother Function is the foundational
function of the wavelet transform, designed to analyze
local signal characteristics in the time-frequency domain



~ 804 —

[20]. The mother wavelet generates a wavelet family by
scaling and translating, allowing comprehensive signal
analysis across multiple frequency bands [21].

This study adopts the Daubechies 4 (db4) wavelet
function, which has four vanishing moments and eight
filter coefficients. Four of these represent low-pass filters
for extracting the LL component containing primary
structural information, defined as follows (3):

oo 1EV3 343, 3-V3, _1-V3
ez a2 Tt a2 T a2
®)

The high-pass filter coefficients are derived from the
low-pass coefficients using the following formula (4):

gn) = (D"h(N-1-n) 4)

where N is the filter length. The high pass filter effec-
tively extracts edges, textures, and noise in the image.
Daubechies wavelets are orthogonal and compactly
supported, making them suitable for multi-resolution
analysis and efficient in both DWT and inverse DWT [22,
23].

2.3. Wavelet Threshold Factor Setting

After decomposing the image using Wavelet Transform,
soft thresholding is applied to the high-frequency com-
ponents (LH, HL, HH) to selectively remove noise. This
method suppresses noise by eliminating small, unnecessary
coefficients.

The soft thresholding process is defined by the
following equation (5):

sgn(x) - (x| =T), |x| > T

5
0, x| <T ©)

5100 = {

Here, T denotes the threshold value, and coefficients
less than or equal to T are removed, while coefficients

Original CT Image
Fig. 2. (Color online) ROI Generation Pipeline for Chest/Abdomen CT Images.
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exceeding T are shrunk by T and preserved. However, to
better reflect the local characteristics of the image, this
study employed an adaptive thresholding scheme. The
threshold value T is generally determined based on
statistical characteristics, as shown in the following
equation (6):

T = o,/2logn (6)

Where o is the standard deviation of the noise, and » is
the number of wavelet coefficients. This approach is
designed to exclude the possibility of spuriously large
values among numerous coefficients based on prob-
abilistic theory, such as the expected value of the
maximum or the probability of maximum noise, thus
providing a theoretically universal and automated criterion
[24, 25]. However, given the specific nature of medical
image processing, an application-specific threshold setting
is necessary to reflect data peculiarities, such as visual
quality enhancement and noise suppression. Therefore,
the threshold value was determined using the following
empirical formula (7):

T=k-w-o ™)

Here, k is the scaling factor, w is the band-level
correction factor, and o is the standard deviation of the
noise. This formula allows for dynamic adjustment of the
threshold based on the distribution characteristics of the
noise and changes in resolution within the image,
enabling effective noise suppression while preserving fine
details [26].

2.4. Image Segmentation

For quantitative evaluation of denoising performance,
this study defined a Region of Interest (ROI) based on
automated segmentation of thoracic and abdominal CT
images [27-29]. After converting DICOM images to

Region of Interest
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Hounsfield Units (HU), an initial automatic lung mask
was generated using the lungmask library. If the lung area
was insufficient or absent, an adaptive ROI generation
algorithm was applied. This alternative strategy involved
considering areas with soft tissue HU values (e.g., -1000
to -400 for lung, or 20 to 70 for other soft tissues) to
construct a mask. If all criteria failed, a central soft tissue
mask (-300 to 300 HU) covering 20% to 80% of the
image was generated. Finally, high-density tissues (bone,
HU > 400) were removed, and morphological operations
were applied to secure contiguous ROI. The ROI
generation process is illustrated in Fig. 2.

2.5. Application of Wavelet Transform

In this study, the Wavelet Transform was applied as a
preprocessing step for CT images. As shown in Fig. 3, the
process begins by decomposing the image into low-

Wavelet Transform
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frequency components (representing primary structural
information) and high-frequency components (represent-
ing boundary details and noise). The low-frequency
components are preserved, while the high-frequency
components are processed to selectively remove noise
while retaining important boundary information. Finally,
the low-frequency and denoised high-frequency compo-
nents are reconstructed into a single image using the
Inverse Wavelet Transform (IDWT).

The architecture of the U-Net used in this study is
shown in Fig. 4. This reconstructed image is then used as
the input (256 x 256 x 1) for the U-Net model. The U-
Net consists of an encoding path, a bottleneck layer, and a
decoding path. The encoding path uses two convolutional
blocks and pooling layers to progressively compress the
features and extract high-level representations (32 to 64
channels), halving the spatial resolution. The bottleneck
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Fig. 3. (Color online) Structural Diagram Representing the Wavelet Transform Process.
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Fig. 4. (Color online) Architecture of the U-Net Model for CT Image Denoising.



- 806 -

layer extracts core information via a 128-channel
convolutional layer. The decoding path restores spatial
resolution (64 to 32 channels) by integrating low-level
features from the encoding path with high-level features
from the bottleneck layer via upsampling and skip
connections. The final output passes through a 1 x 1
convolutional layer with a sigmoid activation function to
generate a single-channel grayscale image for pixel-wise
prediction [30, 31].

2.6. Experimental Data and Hyperparameters

The dataset used in this study is a publicly available CT
image dataset from Kaggle, consisting of 100 Chest/
Abdomen CT DICOM files collected from 100 patients
[32]. The entire dataset was split into 80% for training
and 20% for validation to train the model. The Structural
Similarity Index (SSIM)-based loss function was utilized
for model training. This function quantifies the similarity
between the original and predicted images by compre-
hensively considering the image's brightness, contrast,
and structure. The main hyperparameters of the model
were set as shown in Table 1. The initial learning rate was
set to 0.0001, and the batch size was set to 8. The
Adaptive Moment Estimation (Adam) algorithm was used
as the optimizer. The maximum number of epochs was set
to 100, but Early Stopping was implemented to terminate
training if the validation loss did not improve for more

Optimized CT Image Denoising Method Combining Wavelet Transform and U-Net Model — Chanyoung Park and Byungdu Jo

Table 1. Main Hyperparameter Settings for Model Training.

Hyperparameter Value/Setting
Learning rate 0.0001
Batch size 8
Optimizer Adam
Epoch 100
Activation function ReLU
Loss function SSIM Loss

than 10 consecutive epochs. The Rectified Linear Unit
(ReLU) was used as the activation function, and the
output layer utilized the sigmoid function to reflect the
grayscale characteristics of CT images [33].

3. Result

In this study, to quantitatively evaluate the CT image
noise reduction performance of the proposed Wavelet
Transform-based U-Net model, Low-dose CT (LDCT)
images were simulated by adjusting the standard deviation
of noise (o) from 0.01 to 0.1 in 0.01 increments. Gaussian
noise corresponding to each standard deviation level was
randomly added to the CT images with the applied ROI,
and the noise reduction performance of each model was
compared and analyzed. Performance evaluation was

Fig. 5. (Color online) Comparison of CT Image Denoising Results Using U-Net, Wavelet+U-Net.
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Table 2. Comparison of PSNR and SSIM Performance at Dif-
ferent Noise Levels Using a Single U-Net Model.

Noise PSNR PSNR SSIM SSIM
Std (Noisy) (Denoised) (Noisy) (Denoised)
0.01 40.0200 35.0228 0.9226 0.9384
0.02 34.0363 33.9059 0.7669 0.9211
0.03 30.5993 32.8385 0.6150 0.9009
0.04 28.2010 32.0766 0.4937 0.8720
0.05 26.3685 30.9997 0.4025 0.8682
0.06 24.8867 30.2699 0.3342 0.8367
0.07 23.6345 29.1445 0.2824 0.8144
0.08 22.5619 28.3559 0.2424 0.7907
0.09 21.6124 27.9725 0.2109 0.7611
0.10 20.7616 26.9915 0.1857 0.7273

Table 3. Comparison of PSNR and SSIM Performance at Dif-
ferent Noise Levels Using the Wavelet-based U-Net Model.

Noise PSNR PSNR SSIM SSIM
Std (Noisy) (Denoised) (Noisy) (Denoised)
0.01 40.0364 35.8833 0.9226 0.9456
0.02 34.0276 349215 0.7668 0.9309
0.03 30.6666 33.7251 0.6149 0.9192
0.04 28.3020 33.3109 0.4938 0.8966
0.05 26.4122 32.5639 0.4024 0.8823
0.06 24.8828 32.0505 0.3341 0.8562
0.07 23.5954 31.4289 0.2824 0.8452
0.08 22.5334 30.3017 0.2423 0.8135
0.09 21.4944 30.0518 0.2109 0.7959
0.10 20.7153 29.1712 0.1857 0.7795

carried out by comparing the U-Net model with the
Wavelet Transform applied as a preprocessing step
against the conventional U-Net model without it. All
experimental results were quantitatively analyzed based
on mean values. Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) were used as image
reconstruction performance metrics. Generally, a higher
PSNR value indicates superior noise reduction performance,
and an SSIM value closer to 1 signifies higher structural
similarity between the two images [34]. Fig. 5 shows (a)
the reference CT image, (b) the magnified image with
noise applied, and (c) the reconstructed result from the U-
Net model without the Wavelet Transform. Figures (d),
(e), and (f) show the reference CT image, the magnified
image with noise applied, and the reconstructed result
using the U-Net model with the Wavelet Transform,
respectively. Table 2 and Table 3 summarize the PSNR
and SSIM values after noise removal for each model,
confirming that the proposed Wavelet-based U-Net model
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Fig. 6. (Color online) Mean PSNR and SSIM Across Varying
Noise Standard Deviations.

generally outperformed the conventional U-Net. Fig. 6
shows the average PSNR and SSIM scores according to
the standard deviation of the noise. The Wavelet Trans-
form-integrated U-Net model consistently exhibited
higher values in both metrics compared to the standalone
conventional U-Net model.

4. Discussion

This study proposed a novel framework that integrates
the Wavelet Transform with the U-Net architecture to
effectively eliminate noise in CT images and overcome
the limitations of conventional deep learning models,
namely the loss of fine anatomical structures and blurring
artifacts. Recognizing that existing deep learning noise
reduction techniques suffer from these drawbacks, we
utilized the multi-resolution analysis capability of the
Wavelet Transform and an adaptive thresholding scheme
in the preprocessing stage. The core factor driving the
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performance improvement is the Discrete Wavelet
Transform's (DWT) multi-resolution analysis combined
with a selective noise reduction strategy. DWT efficiently
separates the CT image into a low-frequency component
containing structural information and a high-frequency
component containing boundary and noise information. In
this process, the low-frequency component is preserved to
maintain major anatomical structures, while a threshold is
applied only to the high-frequency component, where
noise is concentrated, to suppress the noise. This pre-
processing step effectively and in advance lowers the
noise level of the image input to the U-Net. The
conventional standalone U-Net model must simultane-
ously process both noise and meaningful structural
information in the input image, inevitably leading to
blurring artifacts where boundary and fine texture
information is obscured during the noise reduction
process. In contrast, the proposed model inputs a noise-
reduced image (reconstructed via IDWT) into the U-Net,
allowing U-Net to focus more on structural feature
restoration rather than complex noise suppression. Con-
sequently, the increase in PSNR quantitatively supports
the noise suppression capability, while the enhancement
in SSIM confirms the ability to preserve fine structures.
This demonstrates that the integration of Wavelet
preprocessing effectively addresses the fine detail loss
observed in conventional deep learning denoising, marking
a significant contribution to high-fidelity CT image
reconstruction.

However, this study has the following limitations. First,
the Wavelet Transform and thresholding were performed
as a fixed preprocessing step, separate from the U-Net's
learning process. This hinders end-to-end optimization,
where wavelet coefficients could directly contribute to the
deep learning model's output, leaving room for further
performance improvement. Second, the scaling and
correction factors used for threshold setting were
determined via an empirical formula. This dependence
means that the generalization performance may degrade
when applied to various patient datasets or CT systems
with different noise distributions. To overcome these
limitations, future work plans to introduce a 'learnable
wavelet layer' structure, integrating the Wavelet Transform
as a part of the deep learning network. This will allow the
DWT coefficients to be optimized via backpropagation,
enabling more precise capture of image features. Further-
more, we aim to develop a 'data-driven adaptive thre-
sholding module' that automatically learns and adjusts the
threshold based on the local noise distribution and
structural complexity of the input image, rather than
relying on a fixed empirical threshold, thereby enhancing
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the model's generalization capability. Finally, we will
verify the restoration performance against various types
of noise and conduct in-depth comparative analysis with
other state-of-the-art noise reduction models.

5. Conclusion

This study proposed an optimized framework that
combines the Wavelet Transform with U-Net to improve
the performance of existing deep learning-based CT
image reconstruction. Acknowledging the limitations of
deep learning noise reduction methods, such as fine
structure loss and blurring, we utilized the multi-resolution
analysis of the Wavelet Transform and an adaptive
thresholding technique in the preprocessing stage. The
essence of the proposed model is the maximization of the
U-Net's structural feature restoration capability by using
the Discrete Wavelet Transform to decompose the image
into low- and high-frequency components and applying
selective noise removal only to the high-frequency
component where noise is concentrated. Quantitative
evaluation confirmed that the proposed Wavelet-based U-
Net model consistently showed improved PSNR and
SSIM scores across all noise levels compared to the
standalone conventional U-Net model. This demonstrates
that the framework proposed in this study is excellent at
suppressing noise while preserving the image's structural
similarity and fine anatomical information. The findings
of this research have the significance of substantially
contributing to the improvement of CT image quality for
clinical applications.
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