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Accurate alignment between cone-beam computed tomography (CBCT) and simulation computed tomography

(Sim-CT) is essential for precise dose delivery in adaptive radiotherapy (ART). However, conventional

intensity-based registration remains limited by CBCT-specific degradations such as scatter, beam hardening,

and nonlinear intensity distortions. This study proposes a 3D deep-learning–based rigid registration framework

optimized for robust CBCT-to-Sim-CT alignment. A paired dataset was generated using the Tomographic

Iterative GPU-based Reconstruction Toolbox (TIGRE) with controlled fan-beam and cone-beam geometries

under six-degree-of-freedom (6-DoF) motion. The hybrid Convolutional Neural Network–Multi-Layer Perceptron

(CNN–MLP) model directly estimated rigid transformation parameters through end-to-end learning with a

composite loss combining Structural Similarity Index Measure (SSIM), Normalized Cross-Correlation (NCC),

Mutual Information (MI), and gradient regularization. The framework achieved sub-millimeter and sub-

degree accuracy with stable convergence and robustness against CBCT-specific nonlinearities. These findings

demonstrate the potential of this physics-informed, GPU-accelerated approach for accurate and efficient

alignment in real-time adaptive radiotherapy workflows.
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1. Introduction

In external-beam radiotherapy (EBRT), accurate patient

positioning and anatomical alignment are essential to

ensure that the prescribed dose conforms precisely to the

target while minimizing exposure to surrounding organs

at risk (OARs) [1]. Even small setup errors or anatomical

changes between fractions can cause significant deviations

in dose distribution, reducing tumor control probability

and increasing normal tissue complication risks [2]. To

mitigate these uncertainties, image-guided radiotherapy

(IGRT) is routinely employed, with on-board cone-beam

computed tomography (CBCT) serving as the primary

imaging modality for daily patient verification [3]. CBCT

provides volumetric imaging for setup correction in six

degrees of freedom and enables adaptive workflows.

However, compared with fan-beam simulation computed

tomography (Sim-CT), CBCT suffers from scatter, beam

hardening, truncated field-of-view, and low soft-tissue

contrast [4, 5]. These physical limitations degrade image

quality and compromise the robustness of intensity-based

registration between CBCT and Sim-CT, particularly in

soft-tissue–dominant regions such as the head and neck or

pelvis [6]. In adaptive radiotherapy (ART) workflows,

image registration provides the spatial correspondence

between daily images and the planning CT, which is

required for dose accumulation, contour propagation, and

subsequent plan adaptation [7]. Conventional registration

algorithms, including mutual information and cross-

correlation, rely heavily on intensity similarity [8]. As a

result, they often fail under CBCT-specific conditions

such as noise, scatter-induced non-linear intensity distortions,

and anatomical truncation [3, 4, 9, 10]. Moreover, their

iterative optimization process can be computationally

expensive and impractical for time-sensitive adaptive

workflows [11]. Deep learning–based registration has

recently emerged as a powerful alternative by learning

image features that capture structural and contextual
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correspondence beyond raw intensity [12]. Methods such

as VoxelMorph and TransMorph have achieved high

accuracy and speed in deformable registration tasks [13,

14]. While these approaches focus on modeling non-rigid

anatomical variations, rigid registration remains the

essential first step in clinical radiotherapy workflows,

providing a geometrically consistent reference that

precedes any deformable registration or dose recalculation

[8, 13, 14]. Traditional rigid registration methods,

however, still depend on hand-crafted similarity metrics

and struggle when image intensity distributions differ

substantially between modalities, as in CBCT and Sim-

CT [5, 6]. In this study, we propose a deep-learning-based

rigid registration framework specifically designed for

CBCT-to-Sim-CT alignment in adaptive radiotherapy.

The objective of this framework is to achieve robust

geometric correspondence between fan-beam Sim-CT and

CBCT volumes reconstructed at different spatial re-

solutions and contrast conditions. To enable quantitative

and reproducible evaluation, a paired dataset with known

transformations was generated using the Tomographic

Iterative GPU-based Reconstruction Toolbox (TIGRE)

under controlled imaging geometry [15]. Building upon

the TransMorph paradigm, a lightweight hybrid Convolu-

tional Neural Network–Multi-Layer Perceptron (CNN–

MLP) architecture was developed to directly estimate six

rigid transformation parameters, ensuring physically

interpretable and computationally efficient alignment

without voxel-wise deformation. The model was trained

with a composite loss function integrating Structural

Similarity (SSIM), Normalized Cross-Correlation (NCC),

Mutual Information (MI), and gradient regularization to

enhance structural fidelity and stability across hetero-

geneous imaging conditions. 

This framework aims to provide a reproducible and

physics-informed foundation for geometry-consistent,

data-driven rigid alignment between CBCT and Sim-CT,

supporting subsequent deformable registration and dose

adaptation in modern adaptive radiotherapy workflows.

2. Materials and Methods

2.1. Dataset and Preprocessing 

In this study, a dedicated dataset was generated using

the TIGRE (Tomographic Iterative GPU-based Recon-

struction Toolbox) under a fully controlled imaging

environment. A modified Shepp–Logan phantom was

implemented in Python and forward-projected using both

fan-beam and cone-beam geometries. The overall data-

generation geometry is illustrated in Fig. 1, while the six-

degree-of-freedom (6-DoF) rigid-body motions applied to

the phantom are shown in Fig. 2. The simulation CT

(Sim-CT) volumes, serving as ground-truth references,

were reconstructed with the fan-beam–based filtered

back-projection (FBP) algorithm on a 256 × 256 × 256

grid with 1.0 mm3 isotropic voxels. To ensure consistency,

both FBP and Feldkamp–Davis–Kress (FDK) recon-

structions were performed using identical geometry (SOD

= 800 mm, SDD = 1200 mm), maintaining uniform

magnification and spatial correspondence. The on-board

imager (OBI)–based CBCT datasets, representative of

clinical radiotherapy systems, were reconstructed using

the FDK algorithm on a 128 × 128 × 128 grid with the

same voxel size. To simulate patient setup uncertainties in

adaptive radiotherapy, the phantom underwent controlled

3D translational (±1.5 cm, 0.5 cm steps) and rotational

(≤ 30o) transformations, including single- and multi-axis

perturbations. Each transformed phantom was forward-

projected and reconstructed with both FDK (CBCT) and

FBP (Sim-CT) within the TIGRE framework. The

resulting paired CBCT and Sim-CT volumes formed a

standardized dataset for quantitative evaluation of the

proposed 3D rigid registration network.

Fig. 1. (Color online) Schematic illustration of the imaging

geometry used for data generation. A modified Shepp–Logan

phantom was placed at isocenter and forward-projected under

identical cone-beam CT (CBCT) and simulation CT (FBP)

configurations. Source–object distance (SOD) and source-to-

detector distance (SDD) were fixed at 800 mm and 1200 mm,

respectively. Controlled translational and rotational offsets

were applied to simulate patient-setup variations in adaptive

radiotherapy.
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2.2. Network Architecture 

The overall structure of the proposed 3D rigid

registration network is shown in Fig. 3. Inspired by the

TransMorph framework for learning-based medical image

registration [14], the model adopts a hybrid CNN–MLP

design that directly predicts six rigid transformation

parameters between CBCT and simulation CT (Sim-CT)

volumes. Each input pair—moving (Imov) and fixed (Ifix)—

is processed through a shared-weight 3D CNN dual

encoder that extracts spatial features from both domains

Fig. 2. (Color online) Overview of the six-degree-of-freedom (6-DoF) rigid-body transformations applied to the phantom during

dataset generation. Panels (a)–(c) represent translational motions along the X, Y, and Z axes, while (d)–(f) illustrate rotational

motions (pitch x, yaw y, and roll z) about the corresponding axes.

Fig. 3. (Color online) Overall architecture of the proposed TransMorph-inspired 3D rigid registration network. The model integrates

dual-encoder convolutional feature extraction and a compact multilayer perceptron (MLP)-based fusion module to directly estimate

six rigid transformation parameters between the moving (CBCT) and fixed (Sim-CT) volumes.
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while maintaining consistent receptive-field characteristics.

The encoded feature vectors (Fm, Ff) are concatenated and

fused through a compact feature fusion MLP, which

captures inter-volume correlations in a shared latent space

with reduced computational cost. The MLP outputs six

rigid parameters [x, y, z, x, y, z] representing

translation and rotation. Rotational terms are constrained

by a scaled tanh activation to maintain realistic motion

ranges. The predicted parameters are then converted into

an affine transformation matrix within a Spatial Trans-

former Network (STN), which generates a sampling grid

and performs differentiable warping of Imov to produce the

registered volume (Ireg). A composite similarity loss—

comprising SSIM, NCC, MI, gradient, and regularization

terms (Section 2.3)—quantifies the alignment between Ireg
and Ifix. Because all operations are differentiable, the loss

gradients are back-propagated through the STN, MLP,

and CNN encoders, enabling end-to-end optimization of

the 6-DoF rigid registration.

2.3. Loss Function 

The proposed model was trained using a multi-term

composite loss function designed to jointly enforce

structural preservation, intensity alignment, and modality-

invariant consistency between CBCT and Sim-CT volumes.

Each loss term captures a distinct property of the registration

process, ensuring stable convergence even under the non-

linear intensity distributions and noise characteristics

typical of CBCT images. The total objective function is

expressed as:

 (1)

Here, LSSIM represents the SSIM–based loss, which

emphasizes preservation of anatomical structure and local

contrast relationships. SSIM measures pixel-wise

luminance, contrast, and structural correlation within local

neighborhoods [16]. It is defined as:

 (2)

where 1, 2 and 2, 2 denote the local means and

variances of I1 and I2, respectively, and 12 represents

their covariance. The SSIM loss is implemented as LSSIM

= 1  SSIM(ICBCT, ISim-CT), thereby minimizing structural

dissimilarity between the two images. By giving this term,

the largest weight (SSIM = 1.0), the model prioritizes

anatomical fidelity during optimization.

The NCC Loss, LNCC, complements SSIM by focusing

on global intensity alignment. It compensates for intensity

variations arising from scatter, beam hardening, or

reconstruction inconsistencies in CBCT. NCC is computed

as the correlation coefficient between the mean-centered

intensities of the two volumes [17]: 

 (3)

where ICBCT(x, y, z) and ISimCT(x, y, z) represent the

intensity values of the CBCT and sim-CT volumes at

voxel (x, y, z), and CBCT, SimCT denote their respective

global mean intensities.

To further ensure modality invariance, a MI term, LMI,

was introduced. MI measures the shared statistical

dependency between CBCT and Sim-CT intensity di-

stributions, encouraging alignment even when the two

modalities exhibit non-linear intensity mappings or

contrast bias [8]. This loss is estimated using discretized

joint intensity histograms with 32 bins per volume, and

computed as the negative MI:

(4)

where H(·) and H(·, ·) denote marginal and joint entropies,

respectively. This formulation helps the model maintain

robustness across varying acquisition conditions, noise

levels, and contrast responses.

In addition, a gradient regularization term, LGrag, is

included to encourage smoothness in the estimated

sampling grid by penalizing large local spatial gradients,

thereby reducing artifacts or unrealistic deformations. 

Finally, a weak L2 regularization term, Lreg , is applied

to constrain the magnitude of rotation and translation

parameters, ensuring physically plausible motion estimates,

and avoiding overfitting. The weighting coefficients were

empirically determined as SSIM = 1.0, NCC = 0.1, MI =

0.1, and Grad = 0.1.

2.4. Training Strategy

All models were implemented in PyTorch 1.11.3 with

Python 3.10.12 and trained on a workstation equipped

with an Intel Core i7-8700K CPU and an NVIDIA

GeForce RTX 3090 GPU (24 GB VRAM). Mixed-

precision computation was enabled through CUDA 11.3

and cuDNN to improve computational efficiency. The

network was optimized using the Adam optimizer with an

initial learning rate of 1 × 10-4, by a factor of 0.5 every

100 epochs. Due to 3D memory constraints, a batch size

of 1 was used, and training was conducted for 500

epochs. The composite loss function described in Section

2.3 was applied throughout training, balancing the
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contributions of SSIM, NCC, and MI. This configuration

stabilized gradient updates and improved registration

accuracy across varying CBCT geometries and intensity

conditions.

3. Results

The proposed 3D rigid-registration network was

evaluated using paired CBCT and Sim-CT datasets

generated with controlled translational and rotational

displacements. Each dataset included predefined motion

offsets that were applied before reconstruction, and the

registration performance was assessed through both visual

comparison and quantitative alignment accuracy.

As shown in Fig. 4(a–f), representative results for a

translational motion case are presented. The CBCT

(moving) image (a) shows a spatial shift relative to the

reference Sim-CT (c). After applying the proposed

network-based registration, the aligned image (b) became

spatially consistent with the reference. The difference

maps before and after registration (d–e) reveal a distinct

reduction in residual intensity along the phantom

boundary and internal structures. The RGB overlay (f)

confirms that the contours of the registered CBCT and

Sim-CT volumes were well aligned. 

In contrast, 5(a–f), a representative rotational motion

case demonstrates similar registration performance. Prior

to registration, the CBCT and Sim-CT volumes exhibited

a noticeable angular deviation, which was corrected after

processing by the proposed network. The post-registration

image (b) demonstrated close correspondence with the

reference (c), and the difference map (e) showed a clear

reduction in residual error compared with the initial state

(d). The overlay view (f) indicates that the circular

boundary of the phantom was accurately realigned with

minimal visible discrepancy. Fig. 4(a–f) and 5(a–f) show

representative results for translational and rotational

motion cases, respectively. These results demonstrate that

the proposed network effectively aligns CBCT volumes

with reference Sim-CT images under various motion

displacements.

The convergence characteristics of the predicted rigid

motion parameters during training for the 1.5 cm trans-

lation case are illustrated in Fig. 6(a–b). The translational

Fig. 4. (Color online) Representative slice showing rigid translation correction between the moving CBCT and fixed Sim-CT vol-

umes. (a) CBCT (moving), (b) registered output, and (c) Sim-CT (fixed) images. (d) Initial difference before registration, (e) final

difference after registration, and (f) RGB overlay of CBCT (green) and registered Sim-CT (red). 
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parameters in Fig. 6(a)—along the X, Y, and Z axes—

exhibited smooth convergence toward stable displacement

values, while the rotational parameters in Fig. 6(b)—

around each axis (x, y, z) —demonstrated similar

stabilization after approximately 300 epochs. This behavior

indicates that the optimization process successfully reached

a steady state without oscillation, ensuring consistent

estimation of both translational and rotational components

throughout the training iterations.

Quantitative evaluation of the estimated rigid para-

Fig. 5. (Color online) Results of rigid rotational correction between the CBCT and Sim-CT volumes. (a) CBCT (moving), (b) reg-

istered output, and (c) Sim-CT (fixed) images. (d) Initial difference before registration, (e) final difference after registration, and (f)

RGB overlay of CBCT (green) and registered Sim-CT (red). 

Fig. 6. (Color online) Convergence behavior of the predicted rigid motion parameters during network training for the 1.5 cm trans-

lation case. (a) Translational displacements along the X, Y, and Z axes are shown in voxel units, and (b) rotational displacements

around each axis (x, y, z) are presented in degrees. All parameters gradually stabilized after approximately 300 epochs, indicating

convergence of the optimization process toward consistent motion estimation.
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meters is summarized in Tables 1 and 2. For translational

displacements, the mean absolute errors were 1.28 ± 0.16

mm, 0.98 ± 0.09 mm, and 1.39 ± 0.20 mm along the x, y,

and z axes, respectively. Across all motion conditions, the

average translational errors remained within approximately

2 mm, indicating accurate recovery of the spatial offsets.

The corresponding rotational errors were 0.32 ± 0.11o,

0.21 ± 0.08o, and 0.55 ± 0.14o for the x, y, and z axes,

respectively, and all cases showed angular deviations

below 1o. These results confirm the quantitative consistency

of the proposed network in estimating six-degree-of-

freedom rigid motion parameters under both translational

and rotational perturbations.

4. Dicussion and Conclusions

Conventional intensity-based registration algorithms

(e.g., NCC, MI) primarily rely on voxel-wise intensity

similarity and represent anatomical structures only

indirectly through gradient information. As a result, these

methods may be prone to local minima and unstable

convergence, particularly when significant appearance

differences exist between modalities or when intensity

distributions between CBCT and Sim-CT are inconsistent

due to scatter, beam hardening, or nonlinear reconstruction

artifacts [18, 19]. Previous studies have also indicated that

conventional intensity-based registration algorithms are

often prone to local minima and depend strongly on

initialization, which can limit their optimization efficiency

and make convergence less effective in complex search

spaces [20].

To address these limitations, a three-dimensional deep-

learning–based rigid-registration framework was developed

to estimate full 6-DoF motion between CBCT and Sim-

CT volumes. The proposed network consistently recovered

both translations and rotations, effectively compensating

for inter-scan misalignment. Quantitatively, mean absolute

translational errors were below 2 mm, and rotational

errors were within 1o. In the representative 1.5 cm

translation case, displacements across all axes remained

≤ 1.5 mm, and the 30o rotation case exhibited angular

errors of approximately 1o. The convergence profiles in

Fig. 6(a–b) indicate that all motion parameters stabilized

after approximately 300 epochs without oscillation,

demonstrating consistent optimization behavior.

The proposed model performs single feed-forward

inference using a pre-trained network, enabling near real-

time estimation of 6-DoF motion parameters. By leverag-

ing SSIM-based structural similarity as the primary loss

and auxiliary intensity metrics (NCC, MI), the model

maintained robustness against CBCT-specific nonlinearities

and truncation artifacts. This single-pass inference frame-

work demonstrated stable and low-variance alignment

performance across all motion conditions, indicating that

real-time rigid registration may be achievable through a

single feed-forward inference process. The proposed

network effectively maintained robustness against CBCT-

specific nonlinearities and truncation artifacts, achieving

sub-millimeter/sub-degree accuracy across diverse motion

scenarios [18].

Precise CBCT–CT alignment remains essential for

adaptive radiotherapy (ART), as residual misregistration

can lead to inaccuracies in dose accumulation and

compromise anatomical consistency [21]. Because the

proposed framework operates directly on reconstructed

3D volumes without requiring access to raw projection

data, it can be seamlessly integrated into existing on-

board imaging workflows for daily setup verification or

adaptive CBCT registration. Although explicit runtime

benchmarking was not performed, the lightweight

architecture and single-pass inference design suggest

strong feasibility for near real-time clinical deployment

using GPU acceleration. These findings indicate that the

proposed deep-learning–based rigid-registration framework

can serve as a robust and scalable component for motion

correction and geometry-consistent adaptive image guidance

in modern IGRT/ART systems.

This study has certain limitations. Validation was

conducted using numerically simulated phantoms under

controlled motion, which may not fully represent patient-

specific variability or CBCT artifacts such as scatter and

beam hardening. Furthermore, the current implementation

assumes rigid-body motion; extending this framework to

hybrid CNN–Transformer architectures for deformable

Table 1. Mean absolute translational errors (mean ± SD)

between estimated and ground-truth rigid parameters under

different motion conditions.

Motion 

condition

Translations (mm)

[tx] [ty] [tz]

Translation (1.5 cm) 1.28 ± 0.16 0.98 ± 0.09 1.39 ± 0.20

All cases 1.31 ± 0.17 1.05 ± 0.13 1.58 ± 0.28

Table 2. Mean absolute rotational errors (mean ± SD) between

estimated and ground-truth rigid parameters under different

motion conditions. 

Motion 

condition

Rotations (o)

[x] [y] [z]

Rotation (x = 30o) 0.32 ± 0.11 0.21 ± 0.08 0.55 ± 0.14

All cases 0.43 ± 0.15 0.33 ± 0.13 0.71 ± 0.18



Journal of Magnetics, Vol. 30, No. 4, December 2025  801 

registration is a natural next step. Furthermore, deep

learning–based denoising and image enhancement methods

have demonstrated substantial improvements in CT and

CBCT image quality by suppressing noise and preserving

structural details, which could complement the proposed

registration framework in clinical adaptive workflows

[22]. Additional evaluation using perceptual metrics such

as SSIM or NGF could provide deeper insight into local

alignment fidelity. Finally, validation with clinical datasets

and prospective runtime evaluation will be required to

substantiate its applicability to on-line adaptive radio-

therapy workflows, where real-time image registration

and dose adaptation must be achieved within the treat-

ment session.

In summary, the proposed 3D deep-learning–based

rigid-registration framework demonstrated sub-millimeter

and sub-degree precision in estimating 6-DoF motion

between CBCT and Sim-CT volumes, with stable conver-

gence and high computational efficiency. These findings

support its potential as a robust, scalable component for

motion correction and geometry-consistent image guidance

in modern IGRT/ART systems.
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