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Accurate alignment between cone-beam computed tomography (CBCT) and simulation computed tomography
(Sim-CT) is essential for precise dose delivery in adaptive radiotherapy (ART). However, conventional
intensity-based registration remains limited by CBCT-specific degradations such as scatter, beam hardening,
and nonlinear intensity distortions. This study proposes a 3D deep-learning—based rigid registration framework
optimized for robust CBCT-to-Sim-CT alignment. A paired dataset was generated using the Tomographic
Iterative GPU-based Reconstruction Toolbox (TIGRE) with controlled fan-beam and cone-beam geometries
under six-degree-of-freedom (6-DoF) motion. The hybrid Convolutional Neural Network—Multi-Layer Perceptron
(CNN-MLP) model directly estimated rigid transformation parameters through end-to-end learning with a
composite loss combining Structural Similarity Index Measure (SSIM), Normalized Cross-Correlation (NCC),
Mutual Information (MI), and gradient regularization. The framework achieved sub-millimeter and sub-
degree accuracy with stable convergence and robustness against CBCT-specific nonlinearities. These findings
demonstrate the potential of this physics-informed, GPU-accelerated approach for accurate and efficient
alignment in real-time adaptive radiotherapy workflows.
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1. Introduction

In external-beam radiotherapy (EBRT), accurate patient
positioning and anatomical alignment are essential to
ensure that the prescribed dose conforms precisely to the
target while minimizing exposure to surrounding organs
at risk (OARs) [1]. Even small setup errors or anatomical
changes between fractions can cause significant deviations
in dose distribution, reducing tumor control probability
and increasing normal tissue complication risks [2]. To
mitigate these uncertainties, image-guided radiotherapy
(IGRT) is routinely employed, with on-board cone-beam
computed tomography (CBCT) serving as the primary
imaging modality for daily patient verification [3]. CBCT
provides volumetric imaging for setup correction in six
degrees of freedom and enables adaptive workflows.
However, compared with fan-beam simulation computed
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tomography (Sim-CT), CBCT suffers from scatter, beam
hardening, truncated field-of-view, and low soft-tissue
contrast [4, 5]. These physical limitations degrade image
quality and compromise the robustness of intensity-based
registration between CBCT and Sim-CT, particularly in
soft-tissue—dominant regions such as the head and neck or
pelvis [6]. In adaptive radiotherapy (ART) workflows,
image registration provides the spatial correspondence
between daily images and the planning CT, which is
required for dose accumulation, contour propagation, and
subsequent plan adaptation [7]. Conventional registration
algorithms, including mutual information and cross-
correlation, rely heavily on intensity similarity [8]. As a
result, they often fail under CBCT-specific conditions
such as noise, scatter-induced non-linear intensity distortions,
and anatomical truncation [3, 4, 9, 10]. Moreover, their
iterative optimization process can be computationally
expensive and impractical for time-sensitive adaptive
workflows [11]. Deep learning—based registration has
recently emerged as a powerful alternative by learning
image features that capture structural and contextual
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correspondence beyond raw intensity [12]. Methods such
as VoxelMorph and TransMorph have achieved high
accuracy and speed in deformable registration tasks [13,
14]. While these approaches focus on modeling non-rigid
anatomical variations, rigid registration remains the
essential first step in clinical radiotherapy workflows,
providing a geometrically consistent reference that
precedes any deformable registration or dose recalculation
[8, 13, 14]. Traditional rigid registration methods,
however, still depend on hand-crafted similarity metrics
and struggle when image intensity distributions differ
substantially between modalities, as in CBCT and Sim-
CT [5, 6]. In this study, we propose a deep-learning-based
rigid registration framework specifically designed for
CBCT-to-Sim-CT alignment in adaptive radiotherapy.
The objective of this framework is to achieve robust
geometric correspondence between fan-beam Sim-CT and
CBCT volumes reconstructed at different spatial re-
solutions and contrast conditions. To enable quantitative
and reproducible evaluation, a paired dataset with known
transformations was generated using the Tomographic
Iterative GPU-based Reconstruction Toolbox (TIGRE)
under controlled imaging geometry [15]. Building upon
the TransMorph paradigm, a lightweight hybrid Convolu-
tional Neural Network—Multi-Layer Perceptron (CNN-—
MLP) architecture was developed to directly estimate six
rigid transformation parameters, ensuring physically
interpretable and computationally efficient alignment
without voxel-wise deformation. The model was trained
with a composite loss function integrating Structural
Similarity (SSIM), Normalized Cross-Correlation (NCC),
Mutual Information (MI), and gradient regularization to
enhance structural fidelity and stability across hetero-
geneous imaging conditions.

This framework aims to provide a reproducible and
physics-informed foundation for geometry-consistent,
data-driven rigid alignment between CBCT and Sim-CT,
supporting subsequent deformable registration and dose
adaptation in modern adaptive radiotherapy workflows.

2. Materials and Methods

2.1. Dataset and Preprocessing

In this study, a dedicated dataset was generated using
the TIGRE (Tomographic Iterative GPU-based Recon-
struction Toolbox) under a fully controlled imaging
environment. A modified Shepp—Logan phantom was
implemented in Python and forward-projected using both
fan-beam and cone-beam geometries. The overall data-
generation geometry is illustrated in Fig. 1, while the six-
degree-of-freedom (6-DoF) rigid-body motions applied to
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Fig. 1. (Color online) Schematic illustration of the imaging
geometry used for data generation. A modified Shepp—Logan
phantom was placed at isocenter and forward-projected under
identical cone-beam CT (CBCT) and simulation CT (FBP)
configurations. Source—object distance (SOD) and source-to-
detector distance (SDD) were fixed at 800 mm and 1200 mm,
respectively. Controlled translational and rotational offsets
were applied to simulate patient-setup variations in adaptive
radiotherapy.

the phantom are shown in Fig. 2. The simulation CT
(Sim-CT) volumes, serving as ground-truth references,
were reconstructed with the fan-beam-based filtered
back-projection (FBP) algorithm on a 256 x 256 x 256
grid with 1.0 mm? isotropic voxels. To ensure consistency,
both FBP and Feldkamp—Davis—Kress (FDK) recon-
structions were performed using identical geometry (SOD
= 800 mm, SDD = 1200 mm), maintaining uniform
magnification and spatial correspondence. The on-board
imager (OBI)-based CBCT datasets, representative of
clinical radiotherapy systems, were reconstructed using
the FDK algorithm on a 128 x 128 x 128 grid with the
same voxel size. To simulate patient setup uncertainties in
adaptive radiotherapy, the phantom underwent controlled
3D translational (£1.5 c¢cm, 0.5 cm steps) and rotational
(=30°) transformations, including single- and multi-axis
perturbations. Each transformed phantom was forward-
projected and reconstructed with both FDK (CBCT) and
FBP (Sim-CT) within the TIGRE framework. The
resulting paired CBCT and Sim-CT volumes formed a
standardized dataset for quantitative evaluation of the
proposed 3D rigid registration network.
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Fig. 2. (Color online) Overview of the six-degree-of-freedom (6-DoF) rigid-body transformations applied to the phantom during
dataset generation. Panels (a)—(c) represent translational motions along the X, Y, and Z axes, while (d)—(f) illustrate rotational
motions (pitch &, yaw 6, and roll &,) about the corresponding axes.

2.2. Network Architecture design that directly predicts six rigid transformation
The overall structure of the proposed 3D rigid parameters between CBCT and simulation CT (Sim-CT)
registration network is shown in Fig. 3. Inspired by the volumes. Each input pair—moving (/,.,,) and fixed (/5)—

TransMorph framework for learning-based medical image is processed through a shared-weight 3D CNN dual
registration [14], the model adopts a hybrid CNN-MLP encoder that extracts spatial features from both domains
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Fig. 3. (Color online) Overall architecture of the proposed TransMorph-inspired 3D rigid registration network. The model integrates
dual-encoder convolutional feature extraction and a compact multilayer perceptron (MLP)-based fusion module to directly estimate
six rigid transformation parameters between the moving (CBCT) and fixed (Sim-CT) volumes.
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while maintaining consistent receptive-field characteristics.
The encoded feature vectors (£, F;) are concatenated and
fused through a compact feature fusion MLP, which
captures inter-volume correlations in a shared latent space
with reduced computational cost. The MLP outputs six
rigid parameters [Ax, Ay, Az, 6, 6, €] representing
translation and rotation. Rotational terms are constrained
by a scaled tanh activation to maintain realistic motion
ranges. The predicted parameters are then converted into
an affine transformation matrix within a Spatial Trans-
former Network (STN), which generates a sampling grid
and performs differentiable warping of /,,,, to produce the
registered volume (/.,). A composite similarity loss—
comprising SSIM, NCC, MI, gradient, and regularization
terms (Section 2.3)—quantifies the alignment between 7.,
and /;.. Because all operations are differentiable, the loss
gradients are back-propagated through the STN, MLP,
and CNN encoders, enabling end-to-end optimization of
the 6-DoF rigid registration.

2.3. Loss Function

The proposed model was trained using a multi-term
composite loss function designed to jointly enforce
structural preservation, intensity alignment, and modality-
invariant consistency between CBCT and Sim-CT volumes.
Each loss term captures a distinct property of the registration
process, ensuring stable convergence even under the non-
linear intensity distributions and noise characteristics
typical of CBCT images. The total objective function is
expressed as:

L = wgsim * Lssim + Onee * Lnce + ©Omr - Ly
+ Weraa * Leraa + Lreg (1

Here, Lggy represents the SSIM-based loss, which
emphasizes preservation of anatomical structure and local
contrast relationships. SSIM  measures pixel-wise
luminance, contrast, and structural correlation within local
neighborhoods [16]. It is defined as:

(2ppz +C1)(2012 + C3)
U2+ pu3+Cy)(02+ a3+ C3)

SSIM(I,, 1) = 2)
where 1, 1 and o3, o> denote the local means and
variances of /; and I, respectively, and oy, represents
their covariance. The SSIM loss is implemented as Lgspy
=1 — SSIM(Icgcr; Isim-cr), thereby minimizing structural
dissimilarity between the two images. By giving this term,
the largest weight (awssyy = 1.0), the model prioritizes
anatomical fidelity during optimization.

The NCC Loss, Lycc, complements SSIM by focusing
on global intensity alignment. It compensates for intensity
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variations arising from scatter, beam hardening, or
reconstruction inconsistencies in CBCT. NCC is computed
as the correlation coefficient between the mean-centered
intensities of the two volumes [17]:

Yxyz(Iceer(%,y.2)— teper)Usim—cr(%,Y,2)— Ksim—-cT)

Lyce= 2 >
J Yxy,zUcBer(%,Y,2)— teper)” Xxy,z(Isim—cT(%.Y,2) = ksim—cT)

3)

where Icper(x, v, z) and Iy, cf(x, y, z) represent the
intensity values of the CBCT and sim-CT volumes at
voxel (x, y, z), and tcper Msimcr denote their respective
global mean intensities.

To further ensure modality invariance, a MI term, L,y,
was introduced. MI measures the shared statistical
dependency between CBCT and Sim-CT intensity di-
stributions, encouraging alignment even when the two
modalities exhibit non-linear intensity mappings or
contrast bias [8]. This loss is estimated using discretized
joint intensity histograms with 32 bins per volume, and
computed as the negative MI:

Ly = —[HUcper) + HUsim-cr) — HUcper Isim—cr)] (4)

where H(-) and H(, -) denote marginal and joint entropies,
respectively. This formulation helps the model maintain
robustness across varying acquisition conditions, noise
levels, and contrast responses.

In addition, a gradient regularization term, Lgqe, is
included to encourage smoothness in the estimated
sampling grid by penalizing large local spatial gradients,
thereby reducing artifacts or unrealistic deformations.

Finally, a weak L2 regularization term, L, is applied
to constrain the magnitude of rotation and translation
parameters, ensuring physically plausible motion estimates,
and avoiding overfitting. The weighting coefficients were
empirically determined as wgg = 1.0, @yce = 0.1, @y =
0.1, and @wgyeg = 0.1.

2.4. Training Strategy

All models were implemented in PyTorch 1.11.3 with
Python 3.10.12 and trained on a workstation equipped
with an Intel Core i7-8700K CPU and an NVIDIA
GeForce RTX 3090 GPU (24 GB VRAM). Mixed-
precision computation was enabled through CUDA 11.3
and cuDNN to improve computational efficiency. The
network was optimized using the Adam optimizer with an
initial learning rate of 1 x 10™, by a factor of 0.5 every
100 epochs. Due to 3D memory constraints, a batch size
of 1 was used, and training was conducted for 500
epochs. The composite loss function described in Section
2.3 was applied throughout training, balancing the
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contributions of SSIM, NCC, and MI. This configuration
stabilized gradient updates and improved registration
accuracy across varying CBCT geometries and intensity
conditions.

3. Results

The proposed 3D rigid-registration network was
evaluated using paired CBCT and Sim-CT datasets
generated with controlled translational and rotational
displacements. Each dataset included predefined motion
offsets that were applied before reconstruction, and the
registration performance was assessed through both visual
comparison and quantitative alignment accuracy.

As shown in Fig. 4(a—f), representative results for a
translational motion case are presented. The CBCT
(moving) image (a) shows a spatial shift relative to the
reference Sim-CT (c). After applying the proposed
network-based registration, the aligned image (b) became
spatially consistent with the reference. The difference
maps before and after registration (d—e) reveal a distinct
reduction in residual intensity along the phantom

TransMorph-Inspired Hybrid CNN-MLP 3D Rigid Registration for Adaptive Radiotherapy — Byungdu Jo

boundary and internal structures. The RGB overlay (f)
confirms that the contours of the registered CBCT and
Sim-CT volumes were well aligned.

In contrast, 5(a—f), a representative rotational motion
case demonstrates similar registration performance. Prior
to registration, the CBCT and Sim-CT volumes exhibited
a noticeable angular deviation, which was corrected after
processing by the proposed network. The post-registration
image (b) demonstrated close correspondence with the
reference (c), and the difference map (e) showed a clear
reduction in residual error compared with the initial state
(d). The overlay view (f) indicates that the circular
boundary of the phantom was accurately realigned with
minimal visible discrepancy. Fig. 4(a—f) and 5(a—f) show
representative results for translational and rotational
motion cases, respectively. These results demonstrate that
the proposed network effectively aligns CBCT volumes
with reference Sim-CT images under various motion
displacements.

The convergence characteristics of the predicted rigid
motion parameters during training for the 1.5 cm trans-
lation case are illustrated in Fig. 6(a—b). The translational

Rigid Translation
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Registered

Sim-CT (Fixed)

Initial diff

Final diff

Overlay (G:CBCT, R:Sim-CT)
(U]

Fig. 4. (Color online) Representative slice showing rigid translation correction between the moving CBCT and fixed Sim-CT vol-
umes. (a) CBCT (moving), (b) registered output, and (c¢) Sim-CT (fixed) images. (d) Initial difference before registration, (e) final
difference after registration, and (f) RGB overlay of CBCT (green) and registered Sim-CT (red).
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Fig. 5. (Color online) Results of rigid rotational correction between the CBCT and Sim-CT volumes. (a) CBCT (moving), (b) reg-
istered output, and (c) Sim-CT (fixed) images. (d) Initial difference before registration, (e) final difference after registration, and (f)

RGB overlay of CBCT (green) and registered Sim-CT (red).

(a) Rigid Translation

—o— Trans X (vox)
25| —o— Trans Y (vox) R

—#— Trans Z (vox) /
35 / /—"

15

4—C0—o——

10

Translation (vox)

0 100 200 300 400 500
Epoch

(b) Rigid Rotation

—o— Rot X (°)
20 —o— Rot Y (°)
—#— Rot Z (°)

10

Rotation (°)

-10

-20

-30

0 100 200 300 400 500
Epoch

Fig. 6. (Color online) Convergence behavior of the predicted rigid motion parameters during network training for the 1.5 cm trans-
lation case. (a) Translational displacements along the X, Y, and Z axes are shown in voxel units, and (b) rotational displacements
around each axis (6, 6, &) are presented in degrees. All parameters gradually stabilized after approximately 300 epochs, indicating
convergence of the optimization process toward consistent motion estimation.

parameters in Fig. 6(a)—along the X, Y, and Z axes—
exhibited smooth convergence toward stable displacement
values, while the rotational parameters in Fig. 6(b)—
around each axis (6, 6, @) —demonstrated similar
stabilization after approximately 300 epochs. This behavior

indicates that the optimization process successfully reached
a steady state without oscillation, ensuring consistent
estimation of both translational and rotational components
throughout the training iterations.

Quantitative evaluation of the estimated rigid para-
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Table 1. Mean absolute translational errors (mean + SD)
between estimated and ground-truth rigid parameters under
different motion conditions.

Motion Translations (mm)
condition [Anx] [An] [Afz]
Translation (1.5 cm) 1.28+0.16 0.98 +0.09 1.39+0.20
All cases 1.31+£0.17  1.05£0.13 1.58+0.28

Table 2. Mean absolute rotational errors (mean = SD) between
estimated and ground-truth rigid parameters under different
motion conditions.

Motion Rotations (°)
condition [A6] [AG)] [A€G]
Rotation (6,=30°)  0.32+0.11 0.21+0.08 0.55+0.14
All cases 0.43+0.15 0.33+0.13 0.71+0.18

meters is summarized in Tables 1 and 2. For translational
displacements, the mean absolute errors were 1.28 + 0.16
mm, 0.98 + 0.09 mm, and 1.39 + 0.20 mm along the x, y,
and z axes, respectively. Across all motion conditions, the
average translational errors remained within approximately
2 mm, indicating accurate recovery of the spatial offsets.
The corresponding rotational errors were 0.32+0.11°,
0.21£0.08° and 0.55+0.14° for the X, y, and z axes,
respectively, and all cases showed angular deviations
below 1°. These results confirm the quantitative consistency
of the proposed network in estimating six-degree-of-
freedom rigid motion parameters under both translational
and rotational perturbations.

4. Dicussion and Conclusions

Conventional intensity-based registration algorithms
(e.g., NCC, MI) primarily rely on voxel-wise intensity
similarity and represent anatomical structures only
indirectly through gradient information. As a result, these
methods may be prone to local minima and unstable
convergence, particularly when significant appearance
differences exist between modalities or when intensity
distributions between CBCT and Sim-CT are inconsistent
due to scatter, beam hardening, or nonlinear reconstruction
artifacts [18, 19]. Previous studies have also indicated that
conventional intensity-based registration algorithms are
often prone to local minima and depend strongly on
initialization, which can limit their optimization efficiency
and make convergence less effective in complex search
spaces [20].

To address these limitations, a three-dimensional deep-
learning—based rigid-registration framework was developed
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to estimate full 6-DoF motion between CBCT and Sim-
CT volumes. The proposed network consistently recovered
both translations and rotations, effectively compensating
for inter-scan misalignment. Quantitatively, mean absolute
translational errors were below 2 mm, and rotational
errors were within 1°. In the representative 1.5 cm
translation case, displacements across all axes remained
< 1.5 mm, and the 30° rotation case exhibited angular
errors of approximately 1°. The convergence profiles in
Fig. 6(a-b) indicate that all motion parameters stabilized
after approximately 300 epochs without oscillation,
demonstrating consistent optimization behavior.

The proposed model performs single feed-forward
inference using a pre-trained network, enabling near real-
time estimation of 6-DoF motion parameters. By leverag-
ing SSIM-based structural similarity as the primary loss
and auxiliary intensity metrics (NCC, MI), the model
maintained robustness against CBCT-specific nonlinearities
and truncation artifacts. This single-pass inference frame-
work demonstrated stable and low-variance alignment
performance across all motion conditions, indicating that
real-time rigid registration may be achievable through a
single feed-forward inference process. The proposed
network effectively maintained robustness against CBCT-
specific nonlinearities and truncation artifacts, achieving
sub-millimeter/sub-degree accuracy across diverse motion
scenarios [18].

Precise CBCT-CT alignment remains essential for
adaptive radiotherapy (ART), as residual misregistration
can lead to inaccuracies in dose accumulation and
compromise anatomical consistency [21]. Because the
proposed framework operates directly on reconstructed
3D volumes without requiring access to raw projection
data, it can be seamlessly integrated into existing on-
board imaging workflows for daily setup verification or
adaptive CBCT registration. Although explicit runtime
benchmarking was not performed, the lightweight
architecture and single-pass inference design suggest
strong feasibility for near real-time clinical deployment
using GPU acceleration. These findings indicate that the
proposed deep-learning—based rigid-registration framework
can serve as a robust and scalable component for motion
correction and geometry-consistent adaptive image guidance
in modern IGRT/ART systems.

This study has certain limitations. Validation was
conducted using numerically simulated phantoms under
controlled motion, which may not fully represent patient-
specific variability or CBCT artifacts such as scatter and
beam hardening. Furthermore, the current implementation
assumes rigid-body motion; extending this framework to
hybrid CNN-Transformer architectures for deformable
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registration is a natural next step. Furthermore, deep
learning—based denoising and image enhancement methods
have demonstrated substantial improvements in CT and
CBCT image quality by suppressing noise and preserving
structural details, which could complement the proposed
registration framework in clinical adaptive workflows
[22]. Additional evaluation using perceptual metrics such
as SSIM or NGF could provide deeper insight into local
alignment fidelity. Finally, validation with clinical datasets
and prospective runtime evaluation will be required to
substantiate its applicability to on-line adaptive radio-
therapy workflows, where real-time image registration
and dose adaptation must be achieved within the treat-
ment session.

In summary, the proposed 3D deep-learning—based
rigid-registration framework demonstrated sub-millimeter
and sub-degree precision in estimating 6-DoF motion
between CBCT and Sim-CT volumes, with stable conver-
gence and high computational efficiency. These findings
support its potential as a robust, scalable component for
motion correction and geometry-consistent image guidance
in modern IGRT/ART systems.
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