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We evaluated artificial intelligence (AI)-based auto-segmentation models in patients with breast cancer
undergoing surgery and radiation therapy. Radiation oncologists manually defined clinical target volume
(CTV) and planning target volume (PTV) in 100 cases to train Acculearning 2.2.3.182 and OncoStudio 2.0.4,
with models automatically contouring CTV and PTYV, showing acceptable agreement with manual contours
using Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD). In
four cases, manual contouring took 548 + 205 s, whereas Al-assisted contouring with manual revision took 187
+ 40 s. The paired z-test revealed significant accuracy improvements with the 3D approach for RNI cases (p <
0.05) and laterality-dependent differences in WBI cases (p < 0.05). These findings highlight the need to consider
treatment extent and anatomical laterality in Al auto-segmentation. Deep learning segmentation speeds up
contouring and enhances workflow efficiency in radiation therapy planning.

Keywords : Al-based auto-segmentation, electromagnetic radiation, breast cancer, regional nodal irradiation, clinical
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1. Introduction

In traditional radiation therapy planning, outlining the
treatment volume on simulation CT (sim-CT) images is
entirely the responsibility of radiation oncologists. The
manual contouring process is time-consuming and
susceptible to interobserver and intra- and interinstrument
variability, leading to differences in target delineation [1-
5]. With advances in artificial intelligence (Al), this
technology has emerged as a potential tool for optimizing
radiation therapy across all stages, from sim-CT segment-
ation to treatment planning and dose delivery [6-8]. Al is
increasingly applied to dose prediction, adaptive planning,
and adaptive radiation therapy, with its clinical utility
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rapidly evolving [9]. Among these applications, Al-based
auto-segmentation automates the delineation of targets
and organs at risk (OARs), improving workflow efficiency
and mitigating interobserver variability [10-13]. This
approach generates accurate and consistent contours and
reduces the time required for manual contouring [14-18].
With the increasing incidence of breast cancer and the
growing number of patients receiving radiation therapy,
treatment techniques have evolved from two-dimensional
(2D) planning to stereotactic approaches and intensity-
modulated radiation therapy. As the use of comprehensive
regional nodal irradiation (RNI) has expanded through
clinical trials, the target volumes have become more
complex, necessitating adherence to international guide-
lines [19,20]. Discrepancies in OAR contours increase
dose uncertainty, compromising treatment efficacy and
elevating the risk of complications in patients. Recent
advances in computing performance, algorithms, and data
collection have accelerated Al research. Men et al. [21]
developed a deep learning-based model for breast target
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delineation, and several vendors have since released an
Al-based auto-segmentation platform. As Al-assisted
contouring becomes more common, validation is essential
for safe clinical integration, and identifying the key
components for model optimization remains critical [22].
This study evaluated two Al-based auto-segmentation
models in patients undergoing breast-conserving surgery
(BCS) and receiving whole breast irradiation (WBI) with
or without regional node irradiation (RNI). The performance
was assessed based on the contouring accuracy and time
efficiency in the clinical workflow.

2. Materials and Methods

2.1. Patients with Breast Cancer

This study was reviewed and approved by the Institu-
tional Review Board of Kangwon National University
Hospital (IRB No. 2025-05-001). All imaging and contour
data were deidentified prior to analysis.

The study included 100 patients with breast cancer who
received adjuvant radiation therapy following BCS at our
hospital between August 26, 2021, and April 1, 2025. The
cohort comprised 50 patients with left-sided breast cancer
and 50 with right-sided breast cancer. Among them, 60
patients underwent WBI, and 40 received RNI in addition
to WBI. For patients treated with WBI alone, the
distribution of cTNM staging at diagnosis was Tis in 7
(11.7%), T1 in 42 (70.0%), and T2 in 11 (18.3%); all
were NO (100%). For patients receiving WBI and RNI,
the staging distribution was as follows: T1, 9 (22.5%), T2
22 (55%), T3 8 (20%); T4, 1 (2.5%); NO, 1 (2.5%), N1
29 (72.5%), N2 8 (20%); and N3, 2 (5%). The median
patient age was 58 years (range, 34—86).

Sim-CT was performed in all 100 patients to delineate
the clinical target volume (CTV) and planning target
volume (PTV), and contrast enhancement was applied in
patients undergoing RNI when clinically indicated. CT
scans (Go-Sim, Siemens) were performed approximately
1 week before RT, with a slice thickness of 2 mm. The
patients were positioned supine with both arms elevated
on arm-support devices (CIVICO). Contrast-enhanced CT
scans were obtained 1 min after intravenous injection of
100-115 mL of iodinated contrast (Ultraject, 320 mg/
mL), which was adjusted according to the patient’s weight.

2.2. Delineation

A radiation oncologist delineated the CTV and PTV for
each patient with breast cancer. The target areas included
the ipsilateral breast (CTVp_breast) and, depending on
individual risk factors, axillary lymph node levels 1-3
(CTVn_L1-L3), supraclavicular lymph nodes (SCL;
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CTVn_L4), and/or internal mammary lymph nodes
(CTVn_IMN). The CTV was delineated according to the
ESTRO guidelines, with modifications applied by the
radiation oncologist as clinically appropriate. The PTV
was defined as a 4-5 mm expansion from the final CTV.

2.3. Al-based auto-segmentation (Deep learning frame-
work)

We compared the Al-based auto-segmentation frame-
works of two platforms: Acculearning 2.2.3 (Manteia
Technologies Co.) and OncoStudio 2.0.4 (Oncosoft Inc.,
Seoul, South Korea). Both employ deep learning architec-
tures based on the encoder-decoder U-Net framework
with skip connections to preserve the spatial features.
Dice loss is the primary loss function, with optional
alternatives such as Focal Loss and Generalized Dice
Loss. The Adam optimizer was used by default, and both
platforms supported data augmentation and image
normalization to enhance model generalizability. Validation
strategies, including holdout testing and cross-validation,
are consistently implemented.

There are key differences between these platforms.
Acculearning provides a customizable training environment
with a flexible configuration of network architectures
(e.g., UNet, VNet, HighRes3DNet), activation functions
(e.g., ReLU, Leaky-ReLU, Swish), and normalization
techniques (BatchNorm, InstanceNorm, GroupNorm). It
uses balanced sampling to address class imbalance and
includes a postprocessing module to refine the predictions.
In contrast, OncoStudio standardizes its training pipeline
for comparability across 2D and 3D models. It employs
residual U-Net architectures with PReLU activation and
integrates deep supervision through auxiliary decoder
outputs to improve gradient propagation. The 2D models
process slice-by-slice data with adaptive channel scaling,
whereas the 3D models process full-volumetric data with
fixed depth and channel configuration.

Acculearning emphasizes dataset management and
provides tools for automatic ROI name normalization,
voxel-level statistical analysis, and format conversion
(DICOM/NIFTI to internal format). These features are
absent in OncoStudio, which focuses on harmonized
optimization and validation procedures across 2D and 3D
models. Overall, although both platforms share core
architectural principles, Acculearing prioritizes flexibility
and fine-tuning options, whereas OncoStudio emphasizes
standardization and model comparability across modalities.

The manually contoured dataset created by radiation
oncologists was divided into three subsets for training and
evaluation: 80% for model training, 10% for validation
(used for hyperparameter tuning and model selection),
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and 10% for independent testing to assess the generali-
zation performance. The models were trained using the
Al-based 2D and 3D frameworks of each manufacturer.
Each model approach is characterized by training
independent deep learning networks for individual
anatomical structures (e.g., CTV, PTV, CTVn-L1/L2/L3,
SCL, and IMN), enabling the models to learn structure-
specific anatomical characteristics and boundary features.
This strategy enhances the boundary precision, particularly
for small or morphologically irregular targets. However,
limited feature sharing across structures may reduce
learning efficiency, and total training time increases as the
number of models increases.

In contrast, the sum model approach trains a single
multiclass network that learns all anatomical label
categories concurrently. This approach encourages shared
representation of anatomical features across structures,
mitigates class imbalance, and preserves global topological
consistency, which is particularly beneficial for nodal
chains. However, local boundary delineation may be
compromised, particularly for small or low-contrast
structures, owing to overlapping feature learning among
adjacent labels. Both approaches were explored because
the RNI includes multiple topologically connected
structures, where shared feature learning across nodal
levels may improve generalization. However, individual
models may provide superior contour fidelity in individual
lymph node stations, which is clinically critical for
accurate dose distribution. The results were compared
with manually delineated contours from radiation
oncologists using datasets in which the CTV and PTV
were trained separately and in combination.

2.4. Analysis

Using patient sim-CT data, 10 test datasets were
prepared, each consisting of manually delineated contours
by radiation oncologists and Al-based auto-segmentation
results. These datasets were used to compare the
performance of the two Al-based auto-segmentation
models. Evaluation was performed using established
geometric metrics: Dice similarity coefficient (DSC) [23,
24] Eq. (1), and 95% Hausdorff distance (HD95) [25] Eq.
(2), and the mean surface distance (MSD) Eq. (3). For
objective evaluation, MATLAB scripts were implemented
to input the data, calculate the metrics, and compare the
results. Statistical analyses were performed using paired
two-tailed r-tests, given that the paired measurements
originated from the same patient cohort. Comparative
assessments were performed between Acculearning and
OncoStudio, 2D and 3D segmentation frameworks, CTV
and PTYV, each-structure and sum-model training strategies,
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and between the left and right sides to evaluate potential
laterality differences. Statistical significance was set at p
< 0.05.

DSC = (2|4 n B|)/(|4] +|B|) @)

* |A| is the number of elements in set A

* |BJ is the number of elements in set B

* |A N B is the number of elements common to both
sets A and B (intersection)

HD(Gt, Pd) = mean,  .pmin, . G/Hpg, —Dpd> (2)
* Ppd represents the predicted pixels, and Pgt represents

the ground truth pixels used for segmentation.

1
(ny +ng)

x [Zd(a;, surface B) + Zd(b;, surface A)] (3)

MSD =

*n_A is the number of points on Surface A.

* n_B is the number of points on Surface B.

* d(a_i, Surface B) is the distance from point a i on
Surface A to the closest point on Surface B.

* d(b_j, Surface A) is the distance from point b _j on
Surface B to the closest point on Surface A.

* Sum() represents the sum of all distances.

Additionally, to assess the clinical utility of Al-based
auto-segmentation, we compared the time required for
clinicians to complete manual contouring on the test
dataset with that required for manual refinement after Al-
based auto-segmentation.

2.5. Comparison of target contouring times between
manual contouring and Al-assisted contouring with
manual correction

We prepared an additional dataset of 10 patients,
including 6 who received WBI only and 4 who received
WBI and RNI, to evaluate the utility of Al-based auto-
segmentation for adjuvant radiation therapy planning after
BCS. A radiation oncologist quantitatively compared the
time required for manual contouring alone with that
required for manual refinement after Al-based auto-
segmentation.

3. Results

3.1. Comparison results of manual segmentation and
Al-based automatic segmentation (Acculearning) based
on 2D/3D (Each/Sum) learning methods when the radi-
ation treatment range is limited to the WBI
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We quantitatively compared the 2D and 3D segmentation
methods for WBI planning. Overall, the 3D approach
outperformed the 2D method in all evaluation metrics.
For both the left and right breasts, the 3D segmentation
achieved higher DSC values and lower HD95 and MSD
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values, indicating improved boundary accuracy.

For the left breast PTV, the 3D method achieved a DSC
of 0.951, compared with 0.923 for the 2D method. In the
right breast CTV, the 3D method also demonstrated
superior performance (DSC 0.942 vs 0.923). The HD95

Table 1. DSC, HD95, and MSD results based on 2D/3D (Each/Sum) learning methods for manual segmentation and Al-based auto-
segmentation (Acculearning) when the radiation treatment range is limited to the WBI.

| PTV CTV
WB DSC HD95(mm) MSD(mm) DSC HD95(mm) MSD(mm)
Each 0.923 7.800 1.417 0.954 3.040 0.810
D (0.02) (£1.93) (0.25) (0.01) (*1.06) (#0.19)
Sum 0.961 2.377 0.740 0.951 2.467 0.857
(#0.00) (#0.72) (#0.10) (#0.00) (#0.61) (#0.11)
Lt Breast
Each 0.951 3.353 0.943 0.951 2.720 0.853
D (+0.01) (#0.37) (#0.16) (#0.01) (+0.63) (+0.14)
Sum 0.950 3.387 0.957 0.949 3.203 0.883
(#0.01) (0.54) (0.20) (#0.01) (#0.35) (*0.17)
Each 0.926 10.990 1.550 0.923 11.667 1.513
b (0.03) (£7.99) (0.82) (0.02) (£6.66) (*0.67)
Sum 0.930 10.387 1.437 0.926 10.000 1.423
(#0.02) (#6.57) (0.57) (#0.02) (#£5.29) (#0.51)
Rt Breast
Each 0.942 4.927 1.177 0.942 4323 1.083
D (£0.00) (#0.32) (#0.18) (#0.01) (+0.70) (+0.25)
Sum 0.944 4.750 1.140 0.942 4.360 1.077
(#0.01) (#1.29) (#0.33) (#0.01) (*1.23) (*0.31)

Fig. 1. (Color online) Results of 2D and 3D (Each/Sum) learning methods for manual and Al-based auto- segmentation (Accu-
learning) when the radiation treatment range was limited to the WBI.
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and MSD values were consistently lower with the 3D
technique, reflecting enhanced spatial agreement in contour
delineation.

Notably, the right breast showed higher HD95 and
MSD values than the left breast, suggesting greater
segmentation complexity, possibly due to anatomical or
motion-related factors. Additionally, CTVs generally
showed higher DSC and lower distance metrics than
PTVs, indicating greater delineation consistency. In the
3D Sum method, PTV results were: DSC 0.944 + 0.01,
HD95 4.750 = 1.29 mm, and MSD 1.140 + 0.33 mm;
CTV results were: DSC 0.942 + 0.01, HD95 4.360 + 1.23
mm, and MSD 1.077 + 0.31 mm.
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In conclusion, 3D segmentation yielded superior quan-
titative accuracy compared to 2D segmentation. It may
offer significant clinical advantages, particularly in cases
requiring precise anatomical delineations (Table 1, Fig. 1-2).

3.2. Comparison results of manual segmentation and
Al-based automatic segmentation (OncoStudio) based
on 2D/3D (Each/Sum) learning methods when the radi-
ation treatment range is limited to the WBI

This study also evaluated the performance of 2D and
3D segmentation methods in WBI radiation therapy
planning. The 3D method consistently outperformed the
2D method across DSC, HD95, and MSD.
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Fig. 2. (Color online) Results of DSC, HD95, and MSD based on 2D and 3D (Each/Sum) learning methods for manual and Al-
based auto-segmentation (Acculearning) when the radiation treatment range was limited to the WBL
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Table 2. DSC, HD95, and MSD results based on 2D/3D (Each/Sum) learning methods for manual segmentation and Al-based auto-
segmentation (OncoStudio) when the radiation treatment range is limited to WBI.

WEL PTV CTV
DSC HD95(mm) MSD (mm) DSC HD95 (mm) MSD (mm)

Each 0.940 4.687 1.097 0.944 3.667 0.967

D (+0.01) (£2.01) (£0.25) (+0.01) (£0.58) (£0.16)

Sum 0.954 2.817 0.850 0.952 2.743 0.820

(=0.01) (+0.32) (+0.07) (£0.01) (x0.47) (£0.06)

Lt Breast

Each 0.954 3.103 0.830 0.951 3.243 0.837

D (=0.01) (£1.03) (£0.23) (0.01) (£1.49) (£0.25)

Sum 0.958 3.173 0.790 0.956 2.993 0.740

(+0.01) (+0.94) (#0.21) (0.01) (£0.75) (x0.17)

Each 0.901 11.783 2.063 0.889 13.200 2483

b (£0.04) (£9.78) (£1.14) (£0.06) (x13.35) (£2.12)

Sum 0.887 20.743 2.737 0.903 11.667 1.923

(0.01) (+4.20) (£0.94) (0.03) (£5.86) (£0.76)

Rt Breast

Each 0.947 4.597 1.093 0.944 4.673 1.060

D (0.01) (+1.34) (£0.39) (£0.01) (£1.51) (£0.32)

0.941 5.837 1.213 0.940 5.303 1.123

Sum (+0.01) (+4.52) (+0.44) (#0.01) (#3.57) (x0.39)

In the left breast, the 3D technique achieved higher
DSC values and lower MSD than the 2D method,
particularly for the PTV (DSC: 0.954 vs 0.940; MSD:
0.830 vs 1.097). Similar trends were observed for the

CTV. In contrast, the right breast showed substantially
higher HD95 and MSD values with the 2D method,
especially in the PTV (HD95: 20.743 mm with 2D vs
5.837 mm with 3D), indicating poor boundary agreement.

s \

Fig. 3. (Color online) Results of 2D and 3D (Each/Sum) learning methods for manual segmentation and Al-based auto-segmen-
tation (OncoStudio) when the radiation treatment range was limited to the WBI.
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Fig. 4. (Color online) Results of DSC, HD95, and MSD based

on 2D and 3D (Each/Sum) learning methods for manual and Al-

based auto-segmentation (OncoStudio) when the radiation treatment range was limited to the WBI.

The 3D approach mitigated this issue and achieved better
spatial conformity.

CTV structures generally exhibited higher DSC values
and lower distance metrics than PTVs, suggesting greater
contouring consistency. The large performance gap in the
right breast with the 2D method implies greater
anatomical complexity or variability, which was better
managed using the 3D method.

In conclusion, even in the WBI setting, 3D segmentation
demonstrated superior quantitative accuracy compared
with 2D, offering improved delineation performance,

particularly in anatomically complex regions. This finding
may have important implications for clinical planning
(Table 2, Fig. 3-4).

3.3. Comparison results of manual segmentation and
Al-based automatic segmentation (Acculearning) based
on 2D/3D (Each/Sum) learning methods when the radi-
ation treatment range is extended to RNI

For WBI with RNI cases, the analysis showed that the
3D segmentation technique outperformed the 2D approach
across all evaluation metrics. For WBI with RNI cases,
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Table 3. DSC, HD95, and MSD results based on 2D/3D (Each/Sum) learning methods for manual segmentation and Al-based auto-
segmentation (Acculearning) when the radiation treatment range is extended to include the RNI.

PTV CTV
WBIH+RNI
DSC HD95(mm) MSD(mm) DSC HD95(mm) MSD(mm)
o Fech 0.921 7.770 1455 0.907 11.905 1.665
LRNI Sum 0918 7.450 1.520 0914 5.925 1.400
g Eech 0.937 3.535 0915 0.928 3.500 0.980
Sum 0.935 3.735 0.950 0.928 3.680 0.990
o Fech 0.925 4.695 1315 0918 5.000 1275
Sum 0.925 4550 1.345 0915 5.500 1.330
Rt RNI
g Fech 0.937 4.195 1.115 0.930 4285 1.100
Sum 0.939 3.845 1.080 0.934 3.950 1.035

the DSC was consistently higher with 3D for both the
PTV and CTV on the left and right sides, whereas the
HD95 and MSD were generally lower, indicating improved
spatial alignment and boundary conformity.

For the left WBI and RNI PTVs, the 3D method
achieved DSC of 0.937, HD95 of 3.535 mm, and MSD of
0.915 mm, compared to the 2D method at 0.921, 7.770,
and 1.455 mm, respectively. This comparison shows a
clear performance advantage. The CTV showed similar
improvements, particularly in HD95, which decreased
markedly from 11.905 mm (2D) to 3.500 mm (3D),

suggesting that the 2D approach may be subject to
considerable boundary errors.

The right WBI and RNI also demonstrated the consistent
superiority of the 3D method. For instance, in the right
CTV, HD95 decreased from 5.500 mm (2D) to 3.950 mm
(3D), and MSD decreased from 1.330 mm to 1.035 mm,
reflecting a more precise contour alignment. These findings
confirm that 3D segmentation provides more accurate and
robust delineation in WBI in RNI cases. This finding is
particularly valuable in radiation therapy planning involving
complex nodal structures, supporting the clinical utility of

£ F

2 N

Fig. 5. (Color online) Results based on 2D and 3D (Each/Sum) learning methods for manual segmentation and Al-based auto-seg-
mentation (Acculearning) when the radiation treatment range is extended to include the RNI.
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3D techniques in improving treatment precision for RNI
(Table 3, Fig. 5).

3.4. Comparison results of manual segmentation and
Al-based automatic segmentation (OncoStudio) based
on 2D/3D (Each/Sum) learning methods when the radi-
ation treatment range is extended to include the RNI

For WBI with RNI cases, the 3D segmentation technique
demonstrated superior quantitative performance compared
with the 2D approach. Across all comparisons, the DSC
values were consistently higher for 3D, whereas the
HD95 and MSD values were generally lower, reflecting

A Study on the Clinical Application of Al-based Auto-Segmentation for Target Volumes in Patients--- — Jun-Taek Shin et al.

more accurate and consistent boundary delineation. For
the left WBI and RNI PTV, the 3D method achieved a
DSC of 0.955, HD95 of 2.560 mm, and MSD of 0.730
mm, compared to the 2D method, which achieved 0.911,
5.680 mm, and 1.250 mm, respectively. These values
show marked improvements in quantitative accuracy. In
the CTV, 3D segmentation achieved better HD95 (3.415
mm vs 5.820 mm) and MSD (0.990 mm vs 1.365 mm),
further confirming enhanced spatial conformity in
complex anatomical regions.

The right WBI and RNI exhibited similar trends. For
instance, in the CTV, the 3D approach achieved a DSC of

Table 4. DSC, HD95, and MSD results based on 2D/3D (Each/Sum) learning methods for manual segmentation and Al-based auto-
segmentation (OncoStudio) when the radiation treatment range is extended to include the RNI.

WBI+RNI v v
DSC HD95(mm) MSD(mm) DSC HD95(mm) MSD(mm)

p  Fach 0911 5.680 1.250 0.901 5.820 1.365

Sum 0917 4560 1.110 0.905 5.450 1.250

LURNI Each 0.955 2.560 0.730 0.928 3415 0.990
P sum 0.927 4235 1.070 0918 4735 1.165

p  Fach 0.927 5.180 1315 0.928 3.735 1.125

R(RNI Sum 0.934 4290 1185 0912 6.035 1.390
o Fach 0.941 3.870 1.040 0.929 4.000 1.095

Sum 0.941 3.965 1.030 0.936 3.760 0.985

Fig. 6. (Color online) Results based on 2D and 3D (Each/Sum) learning methods for manual segmentation and Al-based auto-seg-
mentation (OncoStudio) when the radiation treatment range is extended to include the RNI.
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0.936, HD95 of 3.760 mm, and MSD of 0.985 mm,
outperforming the 2D method (DSC: 0.912, HD95: 6.035
mm, MSD: 1.390 mm). These improvements in distance-
based metrics underscore the advantages of the 3D
method in reducing contouring errors and enhancing
geometric precision.

In conclusion, this analysis reinforces that 3D segmen-
tation achieves higher structural accuracy and boundary
consistency in WBI for RNI cases, highlighting its strong
clinical applicability in radiation therapy planning for
nodal targets (Table 4, Fig. 6).

A paired #-test confirmed that 3D segmentation signifi-
cantly outperformed the 2D method under RNI settings,
with p-values < 0.05 across the geometric evaluation
metrics (DSC, HD95, MSD). In the WBI cases, statistically
significant differences were also observed between the
left and right breast segmentations (p < 0.05), indicating
that anatomical laterality contributed to segmentation
variability.

3.5. Comparison results of target contouring times
between manual contouring and Al-assisted contouring
with manual correction

In this study, the average time required for manual
contouring was 548 + 205 s (9.1 min), whereas Al-
assisted contouring, followed by manual revision, was

Table 5. Comparison of target contouring times between man-
ual contouring and Al-assisted contouring with manual correc-
tion.

Method Mean + SD (sec)
Manual contouring 548 +205
Al auto-segmentation + revision 187 +40

Manual vs Al-assisted Contouring Time

700

600

500

400

Time (seconds)

300

o

m—

Manual Al-assisted
Method

200

Fig. 7. (Color online) Boxplot comparison of contouring times
between manual contouring and Al-assisted contouring with
manual revision.
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significantly reduced to 187 = 40 s (3.1 min), with Al-
assisted contouring alone taking an average of 32 + 7 s.
This corresponded to an average time saving of approxi-
mately 361 s (6.0 min), representing a 66% reduction per
patient. These findings highlight the clinical utility of Al-
based auto-segmentation in reducing the workload of
radiation oncologists and improving workflow efficiency
(Table 5, Fig. 7).

4. Discussion

This study demonstrated the clinical feasibility of Al-
based auto-segmentation in radiation therapy planning for
patients with breast cancer, particularly in addressing the
limitations of manual contouring on sim-CT images. Both
the Acculearning and OncoStudio models consistently
achieved superior 3D segmentation performance compared
to 2D across all evaluated metrics, including DSC, HD9S,
and MSD. These advantages were particularly evident in
WBI cases with RNI, which involved anatomically
complex target regions.

These statistical findings further reinforce that 3D
segmentation consistently improves geometric accuracy
and boundary conformity compared to 2D segmentation,
particularly in complex nodal targets. Additionally, the
significant laterality-dependent differences observed in
WBI cases highlight the importance of accounting for
anatomical variability during auto-segmentation in clinical
practice.

The average DSC between the manual and Al-based
contours was approximately 0.9, indicating a clinically
acceptable level of agreement. Furthermore, the time
required for manual correction after Al-based segmentation
was significantly reduced, with manual-only segmentation
averaging 548 + 205 s (9.1 min) and Al-assisted segmen-
tation requiring 187 + 40 s (3.1 min), resulting in a 66%
reduction. The Al-assisted contouring process also demon-
strated high processing efficiency, with an average pro-
cessing time of 32 + 7 s, producing clinically applicable
results in near-real time. However, the analysis of
contouring time was based on only four representative
cases, which limited the statistical power; therefore, the
results were described using mean time reduction rather
than statistical significance. These findings highlight the
potential of Al tools to streamline clinical workflows and
reduce the workload of radiation oncologists.

However, complete automation has not been achieved
for all anatomical structures. In smaller or low-contrast
regions, such as the optic nerve or rectum, segmentation
accuracy was lower, with HD95 values occasionally
being unstable or infinite [26]. These limitations likely
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reflect the intrinsic resolution constraints of CT imaging,
the limited diversity of the training dataset, and the
irregular geometry of specific target volumes. However,
the present study demonstrated that Al-based auto-seg-
mentation can achieve satisfactory contouring performance
even in anatomically less distinct regions, such as the
CTV, suggesting its potential for broader clinical appli-
cability. Future developments may benefit from integrating
multimodal imaging approaches, such as magnetic
resonance imaging or positron emission tomography, to
improve both anatomical delineation and functional
characterization.

To ensure generalizability, it is essential to validate Al
models using multi-institutional datasets, as variations in
contouring protocols and patient anatomy across
institutions can substantially influence the performance of
the models. While vendor-provided models performed
adequately in specific anatomical regions, such as the
chest, abdomen, and pelvis, transfer learning yielded
notable improvements in the head and neck, underscoring
the importance of fine-tuning anatomically complex and
variable regions [27]. Although consensus guidelines
exist for the CTV in WBI and RNI, substantial inter-
institutional and inter-physician variability remains in
clinical practice. Using our institutional dataset, this study
demonstrated that Al-based training can generate auto-
segmentation results optimized for institutional contouring
practices, highlighting the importance of institution-
specific model adaptation. Moreover, selecting appropriate
validation tools tailored to the anatomical region of
interest may be necessary to ensure robust, clinically
relevant model evaluation.

Furthermore, our findings suggest that Al systems
capable of adapting to patient-specific anatomical changes
are critical for advancing adaptive radiation therapy
protocols. This is attributable to our finding that Al-based
auto-segmentation achieved accurate and time-efficient
contouring, demonstrating its feasibility for integration
into adaptive radiation therapy workflows. In our study,
the entire contouring process, including manual revision
after auto-segmentation, was completed in an average of
5 minutes. This efficiency suggests that, with further
advances in automated planning systems, adaptive radiation
therapy could become more time-efficient, less labor-
intensive, and more precise in clinical practice.

Ultimately, fully automated workflows that integrate
segmentation, dose planning, and adaptive adjustments
have the potential to reduce inter-observer variability,
enhance treatment precision, and personalize radiation
therapy. However, achieving this vision will require
concurrent advancements in algorithm interoperability,
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seamless integration with hospital PACS/TPS environments,
and clinician-centered designs. Continuous clinical validation
and multidisciplinary coordination among Al, data science,
and radiation oncology experts are essential to ensure safe
and effective implementation in clinical practice.

5. Conclusion

This study evaluated two Al-based auto-segmentation
models for adjuvant radiation therapy planning in patients
with breast cancer following BCS. Both models demon-
strated high clinical utility, showing excellent agreement
with manual contours for CTV and PTV, with mean
DSCs exceeding 0.9 and consistently stable HD95 and
MSD values. The average time required for manual
correction after Al-based segmentation was reduced to
187 + 40 s (3.1 min), compared with 548 + 205 s (9.1
min) for manual segmentation, reflecting a substantial
improvement in efficiency.

These findings support the role of Al-based auto-
segmentation as a valuable adjunct for radiation oncologists,
reducing manual workload and interobserver variability
while laying the groundwork for adaptive radiation
therapy. The superior performance of 3D segmentation,
particularly in WBI with RNI cases involving complex
anatomical structures, highlights its potential to improve
anatomical accuracy and enhance clinical precision in
treatment planning.

Statistical comparisons confirmed that 3D segmentation
significantly outperformed 2D in RNI cases (p < 0.05)
and demonstrated significant laterality-dependent variability
in WBI cases (p < 0.05). Therefore, incorporating anatomical
complexity and laterality into auto-segmentation work-
flows may further optimize radiation therapy planning
and improve its clinical accuracy.
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