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We evaluated artificial intelligence (AI)-based auto-segmentation models in patients with breast cancer

undergoing surgery and radiation therapy. Radiation oncologists manually defined clinical target volume

(CTV) and planning target volume (PTV) in 100 cases to train Acculearning 2.2.3.182 and OncoStudio 2.0.4,

with models automatically contouring CTV and PTV, showing acceptable agreement with manual contours

using Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD). In

four cases, manual contouring took 548 ± 205 s, whereas AI-assisted contouring with manual revision took 187

± 40 s. The paired t-test revealed significant accuracy improvements with the 3D approach for RNI cases (p <

0.05) and laterality-dependent differences in WBI cases (p < 0.05). These findings highlight the need to consider

treatment extent and anatomical laterality in AI auto-segmentation. Deep learning segmentation speeds up

contouring and enhances workflow efficiency in radiation therapy planning.

Keywords : AI-based auto-segmentation, electromagnetic radiation, breast cancer, regional nodal irradiation, clinical

target volume, planning target volume

1. Introduction

In traditional radiation therapy planning, outlining the

treatment volume on simulation CT (sim-CT) images is

entirely the responsibility of radiation oncologists. The

manual contouring process is time-consuming and

susceptible to interobserver and intra- and interinstrument

variability, leading to differences in target delineation [1-

5]. With advances in artificial intelligence (AI), this

technology has emerged as a potential tool for optimizing

radiation therapy across all stages, from sim-CT segment-

ation to treatment planning and dose delivery [6-8]. AI is

increasingly applied to dose prediction, adaptive planning,

and adaptive radiation therapy, with its clinical utility

rapidly evolving [9]. Among these applications, AI-based

auto-segmentation automates the delineation of targets

and organs at risk (OARs), improving workflow efficiency

and mitigating interobserver variability [10-13]. This

approach generates accurate and consistent contours and

reduces the time required for manual contouring [14-18].

With the increasing incidence of breast cancer and the

growing number of patients receiving radiation therapy,

treatment techniques have evolved from two-dimensional

(2D) planning to stereotactic approaches and intensity-

modulated radiation therapy. As the use of comprehensive

regional nodal irradiation (RNI) has expanded through

clinical trials, the target volumes have become more

complex, necessitating adherence to international guide-

lines [19,20]. Discrepancies in OAR contours increase

dose uncertainty, compromising treatment efficacy and

elevating the risk of complications in patients. Recent

advances in computing performance, algorithms, and data

collection have accelerated AI research. Men et al. [21]

developed a deep learning-based model for breast target
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delineation, and several vendors have since released an

AI-based auto-segmentation platform. As AI-assisted

contouring becomes more common, validation is essential

for safe clinical integration, and identifying the key

components for model optimization remains critical [22].

This study evaluated two AI-based auto-segmentation

models in patients undergoing breast-conserving surgery

(BCS) and receiving whole breast irradiation (WBI) with

or without regional node irradiation (RNI). The performance

was assessed based on the contouring accuracy and time

efficiency in the clinical workflow.

2. Materials and Methods

2.1. Patients with Breast Cancer

This study was reviewed and approved by the Institu-

tional Review Board of Kangwon National University

Hospital (IRB No. 2025-05-001). All imaging and contour

data were deidentified prior to analysis.

The study included 100 patients with breast cancer who

received adjuvant radiation therapy following BCS at our

hospital between August 26, 2021, and April 1, 2025. The

cohort comprised 50 patients with left-sided breast cancer

and 50 with right-sided breast cancer. Among them, 60

patients underwent WBI, and 40 received RNI in addition

to WBI. For patients treated with WBI alone, the

distribution of cTNM staging at diagnosis was Tis in 7

(11.7%), T1 in 42 (70.0%), and T2 in 11 (18.3%); all

were N0 (100%). For patients receiving WBI and RNI,

the staging distribution was as follows: T1, 9 (22.5%), T2

22 (55%), T3 8 (20%); T4, 1 (2.5%); N0, 1 (2.5%), N1

29 (72.5%), N2 8 (20%); and N3, 2 (5%). The median

patient age was 58 years (range, 34–86).

Sim-CT was performed in all 100 patients to delineate

the clinical target volume (CTV) and planning target

volume (PTV), and contrast enhancement was applied in

patients undergoing RNI when clinically indicated. CT

scans (Go-Sim, Siemens) were performed approximately

1 week before RT, with a slice thickness of 2 mm. The

patients were positioned supine with both arms elevated

on arm-support devices (CIVICO). Contrast-enhanced CT

scans were obtained 1 min after intravenous injection of

100–115 mL of iodinated contrast (Ultraject, 320 mg/

mL), which was adjusted according to the patient’s weight.

2.2. Delineation

A radiation oncologist delineated the CTV and PTV for

each patient with breast cancer. The target areas included

the ipsilateral breast (CTVp_breast) and, depending on

individual risk factors, axillary lymph node levels 1-3

(CTVn_L1-L3), supraclavicular lymph nodes (SCL;

CTVn_L4), and/or internal mammary lymph nodes

(CTVn_IMN). The CTV was delineated according to the

ESTRO guidelines, with modifications applied by the

radiation oncologist as clinically appropriate. The PTV

was defined as a 4–5 mm expansion from the final CTV.

2.3. AI-based auto-segmentation (Deep learning frame-

work)

We compared the AI-based auto-segmentation frame-

works of two platforms: Acculearning 2.2.3 (Manteia

Technologies Co.) and OncoStudio 2.0.4 (Oncosoft Inc.,

Seoul, South Korea). Both employ deep learning architec-

tures based on the encoder-decoder U-Net framework

with skip connections to preserve the spatial features.

Dice loss is the primary loss function, with optional

alternatives such as Focal Loss and Generalized Dice

Loss. The Adam optimizer was used by default, and both

platforms supported data augmentation and image

normalization to enhance model generalizability. Validation

strategies, including holdout testing and cross-validation,

are consistently implemented.

There are key differences between these platforms.

Acculearning provides a customizable training environment

with a flexible configuration of network architectures

(e.g., UNet, VNet, HighRes3DNet), activation functions

(e.g., ReLU, Leaky-ReLU, Swish), and normalization

techniques (BatchNorm, InstanceNorm, GroupNorm). It

uses balanced sampling to address class imbalance and

includes a postprocessing module to refine the predictions.

In contrast, OncoStudio standardizes its training pipeline

for comparability across 2D and 3D models. It employs

residual U-Net architectures with PReLU activation and

integrates deep supervision through auxiliary decoder

outputs to improve gradient propagation. The 2D models

process slice-by-slice data with adaptive channel scaling,

whereas the 3D models process full-volumetric data with

fixed depth and channel configuration.

Acculearning emphasizes dataset management and

provides tools for automatic ROI name normalization,

voxel-level statistical analysis, and format conversion

(DICOM/NIFTI to internal format). These features are

absent in OncoStudio, which focuses on harmonized

optimization and validation procedures across 2D and 3D

models. Overall, although both platforms share core

architectural principles, Acculearning prioritizes flexibility

and fine-tuning options, whereas OncoStudio emphasizes

standardization and model comparability across modalities.

The manually contoured dataset created by radiation

oncologists was divided into three subsets for training and

evaluation: 80% for model training, 10% for validation

(used for hyperparameter tuning and model selection),
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and 10% for independent testing to assess the generali-

zation performance. The models were trained using the

AI-based 2D and 3D frameworks of each manufacturer.

Each model approach is characterized by training

independent deep learning networks for individual

anatomical structures (e.g., CTV, PTV, CTVn–L1/L2/L3,

SCL, and IMN), enabling the models to learn structure-

specific anatomical characteristics and boundary features.

This strategy enhances the boundary precision, particularly

for small or morphologically irregular targets. However,

limited feature sharing across structures may reduce

learning efficiency, and total training time increases as the

number of models increases.

In contrast, the sum model approach trains a single

multiclass network that learns all anatomical label

categories concurrently. This approach encourages shared

representation of anatomical features across structures,

mitigates class imbalance, and preserves global topological

consistency, which is particularly beneficial for nodal

chains. However, local boundary delineation may be

compromised, particularly for small or low-contrast

structures, owing to overlapping feature learning among

adjacent labels. Both approaches were explored because

the RNI includes multiple topologically connected

structures, where shared feature learning across nodal

levels may improve generalization. However, individual

models may provide superior contour fidelity in individual

lymph node stations, which is clinically critical for

accurate dose distribution. The results were compared

with manually delineated contours from radiation

oncologists using datasets in which the CTV and PTV

were trained separately and in combination.

2.4. Analysis

Using patient sim-CT data, 10 test datasets were

prepared, each consisting of manually delineated contours

by radiation oncologists and AI-based auto-segmentation

results. These datasets were used to compare the

performance of the two AI-based auto-segmentation

models. Evaluation was performed using established

geometric metrics: Dice similarity coefficient (DSC) [23,

24] Eq. (1), and 95% Hausdorff distance (HD95) [25] Eq.

(2), and the mean surface distance (MSD) Eq. (3). For

objective evaluation, MATLAB scripts were implemented

to input the data, calculate the metrics, and compare the

results. Statistical analyses were performed using paired

two-tailed t-tests, given that the paired measurements

originated from the same patient cohort. Comparative

assessments were performed between Acculearning and

OncoStudio, 2D and 3D segmentation frameworks, CTV

and PTV, each-structure and sum-model training strategies,

and between the left and right sides to evaluate potential

laterality differences. Statistical significance was set at p

< 0.05.

DSC = (1)

* |A| is the number of elements in set A

* |B| is the number of elements in set B

* |A ∩ B| is the number of elements common to both

sets A and B (intersection)

HD(Gt, Pd) = (2)

* Ppd represents the predicted pixels, and Pgt represents

the ground truth pixels used for segmentation.

(3)

* n_A is the number of points on Surface A.

* n_B is the number of points on Surface B.

* d(a_i, Surface B) is the distance from point a_i on

Surface A to the closest point on Surface B.

* d(b_j, Surface A) is the distance from point b_j on

Surface B to the closest point on Surface A.

* Sum() represents the sum of all distances.

Additionally, to assess the clinical utility of AI-based

auto-segmentation, we compared the time required for

clinicians to complete manual contouring on the test

dataset with that required for manual refinement after AI-

based auto-segmentation.

2.5. Comparison of target contouring times between

manual contouring and AI-assisted contouring with

manual correction

We prepared an additional dataset of 10 patients,

including 6 who received WBI only and 4 who received

WBI and RNI, to evaluate the utility of AI-based auto-

segmentation for adjuvant radiation therapy planning after

BCS. A radiation oncologist quantitatively compared the

time required for manual contouring alone with that

required for manual refinement after AI-based auto-

segmentation.

3. Results

3.1. Comparison results of manual segmentation and

AI-based automatic segmentation (Acculearning) based

on 2D/3D (Each/Sum) learning methods when the radi-

ation treatment range is limited to the WBI

2 A B / A B+ 

meanppd Pd
minpgt Gt

pgt ppd–
2

MSD = 
1

nA nB+ 
----------------------

 × d ai, surface B  + d bi, surface A  
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We quantitatively compared the 2D and 3D segmentation

methods for WBI planning. Overall, the 3D approach

outperformed the 2D method in all evaluation metrics.

For both the left and right breasts, the 3D segmentation

achieved higher DSC values and lower HD95 and MSD

values, indicating improved boundary accuracy.

For the left breast PTV, the 3D method achieved a DSC

of 0.951, compared with 0.923 for the 2D method. In the

right breast CTV, the 3D method also demonstrated

superior performance (DSC 0.942 vs 0.923). The HD95

Table 1. DSC, HD95, and MSD results based on 2D/3D (Each/Sum) learning methods for manual segmentation and AI-based auto-
segmentation (Acculearning) when the radiation treatment range is limited to the WBI.

WBI
PTV CTV

DSC HD95(mm) MSD(mm) DSC HD95(mm) MSD(mm)

Lt Breast

2D

Each
0.923

(±0.02)

7.800

(±1.93)

1.417

(±0.25)

0.954

(±0.01)

3.040

(±1.06)

0.810

(±0.19)

Sum
0.961

(±0.00)

2.377

(±0.72)

0.740

(±0.10)

0.951

(±0.00)

2.467

(±0.61)

0.857

(±0.11)

3D

Each
0.951

(±0.01)

3.353

(±0.37)

0.943

(±0.16)

0.951

(±0.01)

2.720

(±0.63)

0.853

(±0.14)

Sum
0.950

(±0.01)

3.387

(±0.54)

0.957

(±0.20)

0.949

(±0.01)

3.203

(±0.35)

0.883

(±0.17)

Rt Breast

2D

Each
0.926

(±0.03)

10.990

(±7.99)

1.550

(±0.82)

0.923

(±0.02)

11.667

(±6.66)

1.513

(±0.67)

Sum
0.930

(±0.02)

10.387

(±6.57)

1.437

(±0.57)

0.926

(±0.02)

10.000

(±5.29)

1.423

(±0.51)

3D

Each
0.942

(±0.00)

4.927

(±0.32)

1.177

(±0.18)

0.942

(±0.01)

4.323

(±0.70)

1.083

(±0.25)

Sum
0.944

(±0.01)

4.750

(±1.29)

1.140

(±0.33)

0.942

(±0.01)

4.360

(±1.23)

1.077

(±0.31)

Fig. 1. (Color online) Results of 2D and 3D (Each/Sum) learning methods for manual and AI-based auto- segmentation (Accu-
learning) when the radiation treatment range was limited to the WBI.
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and MSD values were consistently lower with the 3D

technique, reflecting enhanced spatial agreement in contour

delineation.

Notably, the right breast showed higher HD95 and

MSD values than the left breast, suggesting greater

segmentation complexity, possibly due to anatomical or

motion-related factors. Additionally, CTVs generally

showed higher DSC and lower distance metrics than

PTVs, indicating greater delineation consistency. In the

3D Sum method, PTV results were: DSC 0.944 ± 0.01,

HD95 4.750 ± 1.29 mm, and MSD 1.140 ± 0.33 mm;

CTV results were: DSC 0.942 ± 0.01, HD95 4.360 ± 1.23

mm, and MSD 1.077 ± 0.31 mm.

In conclusion, 3D segmentation yielded superior quan-

titative accuracy compared to 2D segmentation. It may

offer significant clinical advantages, particularly in cases

requiring precise anatomical delineations (Table 1, Fig. 1-2).

3.2. Comparison results of manual segmentation and

AI-based automatic segmentation (OncoStudio) based

on 2D/3D (Each/Sum) learning methods when the radi-

ation treatment range is limited to the WBI

This study also evaluated the performance of 2D and

3D segmentation methods in WBI radiation therapy

planning. The 3D method consistently outperformed the

2D method across DSC, HD95, and MSD.

Fig. 2. (Color online) Results of DSC, HD95, and MSD based on 2D and 3D (Each/Sum) learning methods for manual and AI-
based auto-segmentation (Acculearning) when the radiation treatment range was limited to the WBI.
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In the left breast, the 3D technique achieved higher

DSC values and lower MSD than the 2D method,

particularly for the PTV (DSC: 0.954 vs 0.940; MSD:

0.830 vs 1.097). Similar trends were observed for the

CTV. In contrast, the right breast showed substantially

higher HD95 and MSD values with the 2D method,

especially in the PTV (HD95: 20.743 mm with 2D vs

5.837 mm with 3D), indicating poor boundary agreement.

Table 2. DSC, HD95, and MSD results based on 2D/3D (Each/Sum) learning methods for manual segmentation and AI-based auto-
segmentation (OncoStudio) when the radiation treatment range is limited to WBI.

WBI
PTV CTV

DSC HD95(mm) MSD (mm) DSC HD95 (mm) MSD (mm) 

Lt Breast

2D

Each
0.940

(±0.01)

4.687

(±2.01)

1.097

(±0.25)

0.944

(±0.01)

3.667

(±0.58)

0.967

(±0.16)

Sum
0.954

(±0.01)

2.817

(±0.32)

0.850

(±0.07)

0.952

(±0.01)

2.743

(±0.47)

0.820

(±0.06)

3D

Each
0.954

(±0.01)

3.103

(±1.03)

0.830

(±0.23)

0.951

(±0.01)

3.243

(±1.49)

0.837

(±0.25)

Sum
0.958

(±0.01)

3.173

(±0.94)

0.790

(±0.21)

0.956

(±0.01)

2.993

(±0.75)

0.740

(±0.17)

Rt Breast

2D

Each
0.901

(±0.04)

11.783

(±9.78)

2.063

(±1.14)

0.889

(±0.06)

13.200

(±13.35)

2.483

(±2.12)

Sum
0.887

(±0.01)

20.743

(±4.20)

2.737

(±0.94)

0.903

(±0.03)

11.667

(±5.86)

1.923

(±0.76)

3D

Each
0.947

(±0.01)

4.597

(±1.34)

1.093

(±0.39)

0.944

(±0.01)

4.673

(±1.51)

1.060

(±0.32)

Sum
0.941

(±0.01)

5.837

(±4.52)

1.213

(±0.44)

0.940

(±0.01)

5.303

(±3.57)

1.123

(±0.39)

Fig. 3. (Color online) Results of 2D and 3D (Each/Sum) learning methods for manual segmentation and AI-based auto-segmen-
tation (OncoStudio) when the radiation treatment range was limited to the WBI.



 770  A Study on the Clinical Application of AI-based Auto-Segmentation for Target Volumes in Patients
…

 Jun-Taek Shin et al.

The 3D approach mitigated this issue and achieved better

spatial conformity.

CTV structures generally exhibited higher DSC values

and lower distance metrics than PTVs, suggesting greater

contouring consistency. The large performance gap in the

right breast with the 2D method implies greater

anatomical complexity or variability, which was better

managed using the 3D method.

In conclusion, even in the WBI setting, 3D segmentation

demonstrated superior quantitative accuracy compared

with 2D, offering improved delineation performance,

particularly in anatomically complex regions. This finding

may have important implications for clinical planning

(Table 2, Fig. 3-4).

3.3. Comparison results of manual segmentation and

AI-based automatic segmentation (Acculearning) based

on 2D/3D (Each/Sum) learning methods when the radi-

ation treatment range is extended to RNI

For WBI with RNI cases, the analysis showed that the

3D segmentation technique outperformed the 2D approach

across all evaluation metrics. For WBI with RNI cases,

Fig. 4. (Color online) Results of DSC, HD95, and MSD based on 2D and 3D (Each/Sum) learning methods for manual and AI-
based auto-segmentation (OncoStudio) when the radiation treatment range was limited to the WBI.
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the DSC was consistently higher with 3D for both the

PTV and CTV on the left and right sides, whereas the

HD95 and MSD were generally lower, indicating improved

spatial alignment and boundary conformity.

For the left WBI and RNI PTVs, the 3D method

achieved DSC of 0.937, HD95 of 3.535 mm, and MSD of

0.915 mm, compared to the 2D method at 0.921, 7.770,

and 1.455 mm, respectively. This comparison shows a

clear performance advantage. The CTV showed similar

improvements, particularly in HD95, which decreased

markedly from 11.905 mm (2D) to 3.500 mm (3D),

suggesting that the 2D approach may be subject to

considerable boundary errors.

The right WBI and RNI also demonstrated the consistent

superiority of the 3D method. For instance, in the right

CTV, HD95 decreased from 5.500 mm (2D) to 3.950 mm

(3D), and MSD decreased from 1.330 mm to 1.035 mm,

reflecting a more precise contour alignment. These findings

confirm that 3D segmentation provides more accurate and

robust delineation in WBI in RNI cases. This finding is

particularly valuable in radiation therapy planning involving

complex nodal structures, supporting the clinical utility of

Table 3. DSC, HD95, and MSD results based on 2D/3D (Each/Sum) learning methods for manual segmentation and AI-based auto-
segmentation (Acculearning) when the radiation treatment range is extended to include the RNI.

WBI+RNI 
PTV CTV

DSC HD95(mm) MSD(mm) DSC HD95(mm) MSD(mm)

Lt RNI

2D
Each 0.921 7.770 1.455 0.907 11.905 1.665

Sum 0.918 7.450 1.520 0.914 5.925 1.400

3D
Each 0.937 3.535 0.915 0.928 3.500 0.980

Sum 0.935 3.735 0.950 0.928 3.680 0.990

Rt RNI

2D
Each 0.925 4.695 1.315 0.918 5.000 1.275

Sum 0.925 4.550 1.345 0.915 5.500 1.330

3D
Each 0.937 4.195 1.115 0.930 4.285 1.100

Sum 0.939 3.845 1.080 0.934 3.950 1.035

Fig. 5. (Color online) Results based on 2D and 3D (Each/Sum) learning methods for manual segmentation and AI-based auto-seg-
mentation (Acculearning) when the radiation treatment range is extended to include the RNI.
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3D techniques in improving treatment precision for RNI

(Table 3, Fig. 5).

3.4. Comparison results of manual segmentation and

AI-based automatic segmentation (OncoStudio) based

on 2D/3D (Each/Sum) learning methods when the radi-

ation treatment range is extended to include the RNI

For WBI with RNI cases, the 3D segmentation technique

demonstrated superior quantitative performance compared

with the 2D approach. Across all comparisons, the DSC

values were consistently higher for 3D, whereas the

HD95 and MSD values were generally lower, reflecting

more accurate and consistent boundary delineation. For

the left WBI and RNI PTV, the 3D method achieved a

DSC of 0.955, HD95 of 2.560 mm, and MSD of 0.730

mm, compared to the 2D method, which achieved 0.911,

5.680 mm, and 1.250 mm, respectively. These values

show marked improvements in quantitative accuracy. In

the CTV, 3D segmentation achieved better HD95 (3.415

mm vs 5.820 mm) and MSD (0.990 mm vs 1.365 mm),

further confirming enhanced spatial conformity in

complex anatomical regions.

The right WBI and RNI exhibited similar trends. For

instance, in the CTV, the 3D approach achieved a DSC of

Table 4. DSC, HD95, and MSD results based on 2D/3D (Each/Sum) learning methods for manual segmentation and AI-based auto-
segmentation (OncoStudio) when the radiation treatment range is extended to include the RNI.

WBI+RNI
PTV CTV

DSC HD95(mm) MSD(mm) DSC HD95(mm) MSD(mm)

Lt RNI

2D
Each 0.911 5.680 1.250 0.901 5.820 1.365

Sum 0.917 4.560 1.110 0.905 5.450 1.250

3D
Each 0.955 2.560 0.730 0.928 3.415 0.990

Sum 0.927 4.235 1.070 0.918 4.735 1.165

Rt RNI

2D
Each 0.927 5.180 1.315 0.928 3.735 1.125

Sum 0.934 4.290 1.185 0.912 6.035 1.390

3D
Each 0.941 3.870 1.040 0.929 4.000 1.095

Sum 0.941 3.965 1.030 0.936 3.760 0.985

Fig. 6. (Color online) Results based on 2D and 3D (Each/Sum) learning methods for manual segmentation and AI-based auto-seg-
mentation (OncoStudio) when the radiation treatment range is extended to include the RNI.
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0.936, HD95 of 3.760 mm, and MSD of 0.985 mm,

outperforming the 2D method (DSC: 0.912, HD95: 6.035

mm, MSD: 1.390 mm). These improvements in distance-

based metrics underscore the advantages of the 3D

method in reducing contouring errors and enhancing

geometric precision.

In conclusion, this analysis reinforces that 3D segmen-

tation achieves higher structural accuracy and boundary

consistency in WBI for RNI cases, highlighting its strong

clinical applicability in radiation therapy planning for

nodal targets (Table 4, Fig. 6).

A paired t-test confirmed that 3D segmentation signifi-

cantly outperformed the 2D method under RNI settings,

with p-values < 0.05 across the geometric evaluation

metrics (DSC, HD95, MSD). In the WBI cases, statistically

significant differences were also observed between the

left and right breast segmentations (p < 0.05), indicating

that anatomical laterality contributed to segmentation

variability.

3.5. Comparison results of target contouring times

between manual contouring and AI-assisted contouring

with manual correction

In this study, the average time required for manual

contouring was 548 ± 205 s (9.1 min), whereas AI-

assisted contouring, followed by manual revision, was

significantly reduced to 187 ± 40 s (3.1 min), with AI-

assisted contouring alone taking an average of 32 ± 7 s.

This corresponded to an average time saving of approxi-

mately 361 s (6.0 min), representing a 66% reduction per

patient. These findings highlight the clinical utility of AI-

based auto-segmentation in reducing the workload of

radiation oncologists and improving workflow efficiency

(Table 5, Fig. 7).

4. Discussion

This study demonstrated the clinical feasibility of AI-

based auto-segmentation in radiation therapy planning for

patients with breast cancer, particularly in addressing the

limitations of manual contouring on sim-CT images. Both

the Acculearning and OncoStudio models consistently

achieved superior 3D segmentation performance compared

to 2D across all evaluated metrics, including DSC, HD95,

and MSD. These advantages were particularly evident in

WBI cases with RNI, which involved anatomically

complex target regions.

These statistical findings further reinforce that 3D

segmentation consistently improves geometric accuracy

and boundary conformity compared to 2D segmentation,

particularly in complex nodal targets. Additionally, the

significant laterality-dependent differences observed in

WBI cases highlight the importance of accounting for

anatomical variability during auto-segmentation in clinical

practice.

The average DSC between the manual and AI-based

contours was approximately 0.9, indicating a clinically

acceptable level of agreement. Furthermore, the time

required for manual correction after AI-based segmentation

was significantly reduced, with manual-only segmentation

averaging 548 ± 205 s (9.1 min) and AI-assisted segmen-

tation requiring 187 ± 40 s (3.1 min), resulting in a 66%

reduction. The AI-assisted contouring process also demon-

strated high processing efficiency, with an average pro-

cessing time of 32 ± 7 s, producing clinically applicable

results in near-real time. However, the analysis of

contouring time was based on only four representative

cases, which limited the statistical power; therefore, the

results were described using mean time reduction rather

than statistical significance. These findings highlight the

potential of AI tools to streamline clinical workflows and

reduce the workload of radiation oncologists.

However, complete automation has not been achieved

for all anatomical structures. In smaller or low-contrast

regions, such as the optic nerve or rectum, segmentation

accuracy was lower, with HD95 values occasionally

being unstable or infinite [26]. These limitations likely

Table 5. Comparison of target contouring times between man-
ual contouring and AI-assisted contouring with manual correc-
tion.

Method Mean ± SD (sec)

Manual contouring 548 ± 205 

AI auto-segmentation + revision 187 ± 40 

Fig. 7. (Color online) Boxplot comparison of contouring times
between manual contouring and AI-assisted contouring with
manual revision.
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reflect the intrinsic resolution constraints of CT imaging,

the limited diversity of the training dataset, and the

irregular geometry of specific target volumes. However,

the present study demonstrated that AI-based auto-seg-

mentation can achieve satisfactory contouring performance

even in anatomically less distinct regions, such as the

CTV, suggesting its potential for broader clinical appli-

cability. Future developments may benefit from integrating

multimodal imaging approaches, such as magnetic

resonance imaging or positron emission tomography, to

improve both anatomical delineation and functional

characterization.

To ensure generalizability, it is essential to validate AI

models using multi-institutional datasets, as variations in

contouring protocols and patient anatomy across

institutions can substantially influence the performance of

the models. While vendor-provided models performed

adequately in specific anatomical regions, such as the

chest, abdomen, and pelvis, transfer learning yielded

notable improvements in the head and neck, underscoring

the importance of fine-tuning anatomically complex and

variable regions [27]. Although consensus guidelines

exist for the CTV in WBI and RNI, substantial inter-

institutional and inter-physician variability remains in

clinical practice. Using our institutional dataset, this study

demonstrated that AI-based training can generate auto-

segmentation results optimized for institutional contouring

practices, highlighting the importance of institution-

specific model adaptation. Moreover, selecting appropriate

validation tools tailored to the anatomical region of

interest may be necessary to ensure robust, clinically

relevant model evaluation.

Furthermore, our findings suggest that AI systems

capable of adapting to patient-specific anatomical changes

are critical for advancing adaptive radiation therapy

protocols. This is attributable to our finding that AI-based

auto-segmentation achieved accurate and time-efficient

contouring, demonstrating its feasibility for integration

into adaptive radiation therapy workflows. In our study,

the entire contouring process, including manual revision

after auto-segmentation, was completed in an average of

5 minutes. This efficiency suggests that, with further

advances in automated planning systems, adaptive radiation

therapy could become more time-efficient, less labor-

intensive, and more precise in clinical practice.

Ultimately, fully automated workflows that integrate

segmentation, dose planning, and adaptive adjustments

have the potential to reduce inter-observer variability,

enhance treatment precision, and personalize radiation

therapy. However, achieving this vision will require

concurrent advancements in algorithm interoperability,

seamless integration with hospital PACS/TPS environments,

and clinician-centered designs. Continuous clinical validation

and multidisciplinary coordination among AI, data science,

and radiation oncology experts are essential to ensure safe

and effective implementation in clinical practice.

5. Conclusion

This study evaluated two AI-based auto-segmentation

models for adjuvant radiation therapy planning in patients

with breast cancer following BCS. Both models demon-

strated high clinical utility, showing excellent agreement

with manual contours for CTV and PTV, with mean

DSCs exceeding 0.9 and consistently stable HD95 and

MSD values. The average time required for manual

correction after AI-based segmentation was reduced to

187 ± 40 s (3.1 min), compared with 548 ± 205 s (9.1

min) for manual segmentation, reflecting a substantial

improvement in efficiency.

These findings support the role of AI-based auto-

segmentation as a valuable adjunct for radiation oncologists,

reducing manual workload and interobserver variability

while laying the groundwork for adaptive radiation

therapy. The superior performance of 3D segmentation,

particularly in WBI with RNI cases involving complex

anatomical structures, highlights its potential to improve

anatomical accuracy and enhance clinical precision in

treatment planning.

Statistical comparisons confirmed that 3D segmentation

significantly outperformed 2D in RNI cases (p < 0.05)

and demonstrated significant laterality-dependent variability

in WBI cases (p < 0.05). Therefore, incorporating anatomical

complexity and laterality into auto-segmentation work-

flows may further optimize radiation therapy planning

and improve its clinical accuracy.
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