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Rapid and accurate tracking of radiation sources during electromagnetic radiation emergencies is essential for
minimizing human exposure and enabling prompt evacuation. In this study, we propose a deep learning—based
electromagnetic radiation source tracking system using multiple Nal(TI) radiation spectroscopy detectors. The
training data was constructed via GATE simulation, and the coefficients measured from three detectors were
converted into ratios to compensate for various differences in conditions between simulation and experimental
data. A deep neural network model was designed and trained with these ratio-based datasets, and subsequently
validated with experimental data acquired using Cs-137 sources and Nal(Tl) detectors. The trained model
successfully predicted the X- and Y-coordinates of radiation sources with high accuracy. The deep learning—
based localization achieved an average positional accuracy of 95.65 £ 2.65% in the experimental results, with
accuracies exceeding 99% at certain positions. These findings confirm that the proposed deep learning
approach enables rapid and accurate electromagnetic radiation source localization, with potential applicability
to real-time electromagnetic radiation emergency response.
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1. Introduction

Environmental radiation monitoring systems require
rapid inspection and accurate identification of the source,
along with accurate identification of the type of electro-
magnetic radiation source. This is especially true in
situations involving the use of radioactive materials or the
handling of electromagnetic radiation sources. Rapid
location identification and evacuation are essential in the
event of a radioactive material leak. Current environ-
mental radiation monitoring systems utilize methods such
as measuring the intensity of radiation and visualizing
radiation to determine the location. Measuring the number
and dose of radiation emitted from hazardous areas to
locate sources has limitations in accurately identifying
and visualizing the source. Furthermore, methods utilizing
gamma cameras for imaging utilize collimators with very
low sensitivity, making rapid detection difficult, hindering
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immediate location identification and emergency evacua-
tion from the affected area [1-5].

To improve the shortcomings of these radiation
monitoring systems, previous studies have deployed
multiple high-sensitivity, non-collimator radiation spectro-
scopy detectors and tracked the location of electromagnetic
radiation sources by calculating the number of radiation
incident on each detector. Previously studied methods for
tracking electromagnetic radiation sources have been
studied in various ways. In an early study, simulation data
was generated using Geant4 Application of Tomographic
Emission (GATE), which can simulate the interaction
between radiation and matter, and a location tracking
method using multiple spectroscopy detectors was
proposed based on this data [6, 7]. This method tracks the
location of an electromagnetic radiation source by
calculating the relative count ratio at each detector based
on the inverse square law of the distance from the
detector when the electromagnetic radiation source is
emitted [8, 9]. Subsequently, the feasibility of this method
was verified through experiments using a silicon
photomultiplier (SiPM) detector, and a location tracking

© 2025 Journal of Magnetics



Journal of Magnetics, Vol. 30, No. 4, December 2025

method applying the maximum likelihood position
estimation (MLPE) was proposed using the simulation
data. Subsequently, a non-collimator method was employed
to track the location of the electromagnetic radiation
source in an experiment using a radiation spectroscopic
detector for extremely rapid detection, thereby ensuring
the reliability of the electromagnetic radiation source
location tracking method [10-15].

In this study, we build on previous research by applying
deep learning methods to an electromagnetic radiation
source location tracking method that combines simulation
and experimental data to determine the feasibility of high-
precision location tracking. We design a deep learning-
based location tracking model, label the radiation count
ratios of each detector obtained from simulation data
according to location information, and train the deep
learning model. We then apply the count ratio data based
on location information obtained from actual experiments
to evaluate the location tracking accuracy of the deep
learning model.

2. Materials and Methods

2.1. GATE simulation for acquiring deep learning
model training data

A GATE simulation was performed to obtain training
data to be used in the deep learning model. The training
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Fig. 1. (Color online) Schematic diagram of the radiation
spectroscopy system in GATE.
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data was obtained through interactions between radiation
spectroscopy and radiation sources at various locations.
The radiation source used in the simulation was Cs-137,
which generated a total of 20 MBq of radiation. It was
positioned 5 cm from the front of three 2"(diameter) x
2"(thickness) Nal(TI) radiation spectroscopy detectors
arranged at 10 cm intervals, as shown in Fig. 1. The
radiation sources were positioned in a 21 x 21 array from
0 to 20 cm in the X direction and from 5 to 25 cm in the
Y direction at 1 cm intervals. Data was obtained by
performing the simulation 30 times for a total of 441
locations. The energy resolution of the detector used in
the simulation was set to 10% based on the photopeak of
662 KeV of Cs-137.

2.2. Deep learning model

Deep learning is a technology that mimics the human
brain's neural network, learning from large data sets and
predicting outcomes through multilayer neural networks.
This study applied this technique to radiation source
location tracking. To achieve this, a multilayer perceptron
(MLP)-structured deep neural network (DNN) model was
designed using Pytorch 2.0.1 [16].

The training data used in the deep learning model was
converted to a ratio, representing the number of radiations
detected by each detector. This approach compensates for
coefficient discrepancies between simulations and experi-
ments, allowing for direct application of experimental
data to the trained model. Using 13,230 data points
acquired from three detectors through simulation, six
ratios were derived: D2/D1, D3/D1, D1/D2, D3/D2, D1/
D3, and D2/D3. The ratio data was labeled with the actual
radiation source locations to form a training dataset. The
model designed in this study consists of an input layer,
three hidden layers, and an output layer. The hidden
layers consist of 512, 512, and 256 neurons, respectively,
and learn the input coefficient ratio data. The output layer
is designed to independently predict the X and Y
coordinates of the radiation source. The rectified linear
unit (ReLU) activation function in the hidden layer is
used to ensure nonlinearity and mitigate the gradient
vanishing problem that can occur during the learning
process. Furthermore, the model consists of forward
propagation, loss calculation, backpropagation, and
optimization stages, which are repeated to minimize the
model's loss.

To prevent overfitting, which occurs due to excessive
reliance on specific neurons during the learning process,
the dropout technique was applied, randomly disabling
30% of the neurons. Huber loss was used as the loss
function, and Adam was used as the optimization
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Fig. 2. (Color online) Variation of training and validation loss during the training process of the deep learning model.

algorithm. The batch size was set to 32 and the learning coefficient ratio data for each detector obtained through
rate to 0.0001. The appropriate number of training epochs experiments as input and used it to predict the X and Y
was determined to be 500, based on analysis of training coordinates of the radiation source. This process is
and validation loss trends, as shown in Fig. 2 [17, 18]. depicted in Fig. 3 [19, 20].

After training, the deep learning model received the
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Fig. 3. (Color online) Schematic diagram of the deep learning model for position estimation using GATE simulation data and
experimental data acquired with a Nal(Tl) detector. The model is trained with radiation count ratios according to source position
and predicts the X and Y coordinates through separated pathways.
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2.3. Deep Learning Model Validation Experiment
Data Collection

The number of radiation sources per location for
application to the deep learning model was measured
through experiments. The detector used in this experiment
is a radiation spectroscopy (MODEL 905-3, ORTEC)
manufactured based on a Nal(Tl) scintillator. The detector
used in the experiment consists of a Nal(Tl) scintillator, a
photomultiplier tube, and a signal processing module. A
high-voltage device (MODEL 556, ORTEC) was used to
apply voltage. Afterwards, a main amplifier (DUAL SPEC
AMP 855, ORTEC) was used for signal amplification,
and the signal was transmitted to a computer through a
multi-peak analyzer (ASPEC-927, ORTEC). This trans-
mitted signal was converted into an energy spectrum
using analysis software (MAESTRO, ORTEC) and the
coefficients of the photopeak region were extracted [21-
25]. As shown in Fig. 4, three Cs-137 sources with a total
radioactivity of approximately ~2 pCi were used in the
experiment, stacked one on top of the other. As shown in
Fig. 5, the experimental environment was configured
identically to the simulation environment. A single

Fig. 4. (Color online) Three Cs-137 sources were stacked for
the experiment, and the sources were placed at the central
height of the detector to ensure measurement accuracy.
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Fig. 5. (Color online) Experimental design and actual setup for
radiation source localization. (a) Simulation-based schematic
of detector and source placement. (b) Image of the experimen-
tal setup using a Cs-137 source with Nal(Tl) detectors.
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detector was used, and the distance between each detector
was set to 10 cm, allowing for movement and counting of
radiation. The distance between the radiation sources was
designed to be 5 cm, and the number of incident
radiations at each of 25 locations for 60 minutes was
acquired, and the number of incident radiations on each
detector was converted into a ratio and applied.

2.4. Location accuracy assessment

The ratio of the radiation coefficient at each location of
the radiation spectroscopy obtained in the experiment was
used as the experimental data of the deep learning model
to track the location. As shown in Fig. 6, the error rate of
the location of each radiation source was defined as the
error between the actual location of the radiation source
and the location of the radiation source predicted by the
deep learning model, w, and was calculated by dividing it
by the total distance (system length (cm)) along which the
detectors were arranged, and is expressed by the
following equation [9].

w(cm)
system length(cm) % 100 M

error(%) =

3. Results

A deep learning model was trained using labeled data,
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Fig. 6. (Color online) Error evaluation of the deep learning—
based source localization. The distance w represents the dis-
crepancy between the actual source position and the position
predicted by the deep learning model, and the error rate was
obtained by normalizing this distance with respect to the over-
all detector array length.
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Fig. 7. (Color online) Comparison of the original source posi-
tions with those predicted by the deep learning model. Red
markers represent the true source locations, while blue mark-
ers denote the positions estimated by deep learning.

which included coordinates and radiation count ratios for
each location obtained through simulation. The radiation
count ratios at all locations obtained through experiments
were then used as inputs to evaluate the error rate of a
deep learning-based radiation source location tracking
system.

Fig. 7 shows the actual locations of the radiation
sources marked with red markers, and the coordinates
resulting from the deep learning-based location tracking
are marked with blue square markers. Excellent agreement
between the actual and tracked locations was observed at
all locations.

Table 1 shows the error rates for each location. The

Table 1. Error rate of deep learning estimation relative to orig-
inal positions.

DL Position error rate(%)

X

0 5 10 15 20 Average

5 7.87 10.54 8.31 8.05 8.55 8.66
10 2.06 1.27 343 4.48 7.83 3.81
15 4.18 3.46 0.27 3.04 0.57 2.30
20 4.03 4.56 4.72 2.55 1.64 3.50
25 3.87 427 3.07 2.47 3.58 3.45
Average  4.40 4.82 3.96 4.12 443 4.35
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maximum predicted accuracy was 99.73%, while the
minimum predicted accuracy was 89.46%. Of the 25
locations, 19 were predicted with an accuracy of 95% or
higher, with an error distance of less than 1 cm,
demonstrating extremely high accuracy. Accuracy was
particularly high at (10,15) and (20,15), with accuracy
rates of 99.73% and 99.43%, respectively. The location
with the lowest error rate was (5,5), with a location
accuracy of 89.46%. The average accuracy across all
locations was 95.65 + 2.65%.

4. Discussion and Conclusions

Various environmental radiation monitoring methods
are being developed for radiation detection, making them
essential for rapid evacuation in the event of a radioactive
material leak. Currently, gamma cameras are used to
image radiation source locations. These require collimators
with very small apertures, limiting location detection and
rapid evacuation through imaging. To overcome these
limitations, a radiation source location tracking system
using a non-collimating spectroscopy detector was
developed for rapid detection and source identification.
Research has also been conducted to improve accuracy
and achieve faster source location detection than existing
methods. To achieve this, a deep learning model was
trained based on GATE simulation data and applied to
experimental data acquired using an actual Nal(TI)
radiation spectroscopy detector to estimate the location of
the radiation source. To compensate for the absolute
differences between the simulation and experimental data,
coefficient values were converted to ratios for training
and prediction. By labeling the ratios and X and Y
positions before application, a deep learning-based
location tracking model was implemented that can be
directly applied to real-world data. The results of this
study confirmed a very high accuracy of 95.65 + 2.65%
for the deep learning model, demonstrating a high
accuracy of over 95% at 19 locations, and over 99% in
position prediction accuracy at two locations. However,
the error rate was relatively high at a distance of 5 cm
from the detector. This is considered to be due to the
difference in the radiation count generated due to the
difference in the area where the radiation emitted from
the source interacts with the scintillator at close distances
from the detector. The Cs-137 source used in the
experiment has a very low activity of approximately 2
uCi, so a long measurement time was required to acquire
a large amount of experimental data. However, the
photopeak count value was stable because it was higher
than the background radiation level. In addition, the use
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of a radiation spectroscopy detector allowed for the
distinction of different radiation sources through their
photopeaks, enabling the location of each source to be
tracked with high accuracy.

This study was conducted in the laboratory to verify
feasibility before conducting a real-world demonstration.
Therefore, the experimental area was set to an area where
implementation was feasible. Furthermore, the activity of
the available radiation sources was very low, limiting the
experimental area. Based on this study, future research
will conduct experiments in a wider area to determine
applicability. Furthermore, since the current study focuses
on a single radiation source, further research on the
diffusion of radioactive liquids is necessary. Therefore,
we plan to continue this research in the future.

By reproducing accident scenarios, such as radioactive
material leaks, through simulations and building data
based on these simulations to design a deep learning-
based location tracking system, it is expected that human
radiation exposure can be minimized by quickly
identifying the location of radiation sources in real-world
situations.
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