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Rapid and accurate tracking of radiation sources during electromagnetic radiation emergencies is essential for

minimizing human exposure and enabling prompt evacuation. In this study, we propose a deep learning–based

electromagnetic radiation source tracking system using multiple NaI(Tl) radiation spectroscopy detectors. The

training data was constructed via GATE simulation, and the coefficients measured from three detectors were

converted into ratios to compensate for various differences in conditions between simulation and experimental

data. A deep neural network model was designed and trained with these ratio-based datasets, and subsequently

validated with experimental data acquired using Cs-137 sources and NaI(Tl) detectors. The trained model

successfully predicted the X- and Y-coordinates of radiation sources with high accuracy. The deep learning–

based localization achieved an average positional accuracy of 95.65 ± 2.65% in the experimental results, with

accuracies exceeding 99% at certain positions. These findings confirm that the proposed deep learning

approach enables rapid and accurate electromagnetic radiation source localization, with potential applicability

to real-time electromagnetic radiation emergency response.
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1. Introduction

Environmental radiation monitoring systems require

rapid inspection and accurate identification of the source,

along with accurate identification of the type of electro-

magnetic radiation source. This is especially true in

situations involving the use of radioactive materials or the

handling of electromagnetic radiation sources. Rapid

location identification and evacuation are essential in the

event of a radioactive material leak. Current environ-

mental radiation monitoring systems utilize methods such

as measuring the intensity of radiation and visualizing

radiation to determine the location. Measuring the number

and dose of radiation emitted from hazardous areas to

locate sources has limitations in accurately identifying

and visualizing the source. Furthermore, methods utilizing

gamma cameras for imaging utilize collimators with very

low sensitivity, making rapid detection difficult, hindering

immediate location identification and emergency evacua-

tion from the affected area [1-5].

To improve the shortcomings of these radiation

monitoring systems, previous studies have deployed

multiple high-sensitivity, non-collimator radiation spectro-

scopy detectors and tracked the location of electromagnetic

radiation sources by calculating the number of radiation

incident on each detector. Previously studied methods for

tracking electromagnetic radiation sources have been

studied in various ways. In an early study, simulation data

was generated using Geant4 Application of Tomographic

Emission (GATE), which can simulate the interaction

between radiation and matter, and a location tracking

method using multiple spectroscopy detectors was

proposed based on this data [6, 7]. This method tracks the

location of an electromagnetic radiation source by

calculating the relative count ratio at each detector based

on the inverse square law of the distance from the

detector when the electromagnetic radiation source is

emitted [8, 9]. Subsequently, the feasibility of this method

was verified through experiments using a silicon

photomultiplier (SiPM) detector, and a location tracking
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method applying the maximum likelihood position

estimation (MLPE) was proposed using the simulation

data. Subsequently, a non-collimator method was employed

to track the location of the electromagnetic radiation

source in an experiment using a radiation spectroscopic

detector for extremely rapid detection, thereby ensuring

the reliability of the electromagnetic radiation source

location tracking method [10-15].

In this study, we build on previous research by applying

deep learning methods to an electromagnetic radiation

source location tracking method that combines simulation

and experimental data to determine the feasibility of high-

precision location tracking. We design a deep learning-

based location tracking model, label the radiation count

ratios of each detector obtained from simulation data

according to location information, and train the deep

learning model. We then apply the count ratio data based

on location information obtained from actual experiments

to evaluate the location tracking accuracy of the deep

learning model.

2. Materials and Methods

2.1. GATE simulation for acquiring deep learning

model training data

A GATE simulation was performed to obtain training

data to be used in the deep learning model. The training

data was obtained through interactions between radiation

spectroscopy and radiation sources at various locations.

The radiation source used in the simulation was Cs-137,

which generated a total of 20 MBq of radiation. It was

positioned 5 cm from the front of three 2″(diameter) ×

2″(thickness) NaI(Tl) radiation spectroscopy detectors

arranged at 10 cm intervals, as shown in Fig. 1. The

radiation sources were positioned in a 21 × 21 array from

0 to 20 cm in the X direction and from 5 to 25 cm in the

Y direction at 1 cm intervals. Data was obtained by

performing the simulation 30 times for a total of 441

locations. The energy resolution of the detector used in

the simulation was set to 10% based on the photopeak of

662 KeV of Cs-137.

2.2. Deep learning model

Deep learning is a technology that mimics the human

brain's neural network, learning from large data sets and

predicting outcomes through multilayer neural networks.

This study applied this technique to radiation source

location tracking. To achieve this, a multilayer perceptron

(MLP)-structured deep neural network (DNN) model was

designed using Pytorch 2.0.1 [16].

The training data used in the deep learning model was

converted to a ratio, representing the number of radiations

detected by each detector. This approach compensates for

coefficient discrepancies between simulations and experi-

ments, allowing for direct application of experimental

data to the trained model. Using 13,230 data points

acquired from three detectors through simulation, six

ratios were derived: D2/D1, D3/D1, D1/D2, D3/D2, D1/

D3, and D2/D3. The ratio data was labeled with the actual

radiation source locations to form a training dataset. The

model designed in this study consists of an input layer,

three hidden layers, and an output layer. The hidden

layers consist of 512, 512, and 256 neurons, respectively,

and learn the input coefficient ratio data. The output layer

is designed to independently predict the X and Y

coordinates of the radiation source. The rectified linear

unit (ReLU) activation function in the hidden layer is

used to ensure nonlinearity and mitigate the gradient

vanishing problem that can occur during the learning

process. Furthermore, the model consists of forward

propagation, loss calculation, backpropagation, and

optimization stages, which are repeated to minimize the

model's loss.

To prevent overfitting, which occurs due to excessive

reliance on specific neurons during the learning process,

the dropout technique was applied, randomly disabling

30% of the neurons. Huber loss was used as the loss

function, and Adam was used as the optimization

Fig. 1. (Color online) Schematic diagram of the radiation

spectroscopy system in GATE.
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algorithm. The batch size was set to 32 and the learning

rate to 0.0001. The appropriate number of training epochs

was determined to be 500, based on analysis of training

and validation loss trends, as shown in Fig. 2 [17, 18].

After training, the deep learning model received the

coefficient ratio data for each detector obtained through

experiments as input and used it to predict the X and Y

coordinates of the radiation source. This process is

depicted in Fig. 3 [19, 20].

Fig. 2. (Color online) Variation of training and validation loss during the training process of the deep learning model.

Fig. 3. (Color online) Schematic diagram of the deep learning model for position estimation using GATE simulation data and

experimental data acquired with a NaI(Tl) detector. The model is trained with radiation count ratios according to source position

and predicts the X and Y coordinates through separated pathways.
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2.3. Deep Learning Model Validation Experiment

Data Collection

The number of radiation sources per location for

application to the deep learning model was measured

through experiments. The detector used in this experiment

is a radiation spectroscopy (MODEL 905-3, ORTEC)

manufactured based on a NaI(Tl) scintillator. The detector

used in the experiment consists of a NaI(Tl) scintillator, a

photomultiplier tube, and a signal processing module. A

high-voltage device (MODEL 556, ORTEC) was used to

apply voltage. Afterwards, a main amplifier (DUAL SPEC

AMP 855, ORTEC) was used for signal amplification,

and the signal was transmitted to a computer through a

multi-peak analyzer (ASPEC-927, ORTEC). This trans-

mitted signal was converted into an energy spectrum

using analysis software (MAESTRO, ORTEC) and the

coefficients of the photopeak region were extracted [21-

25]. As shown in Fig. 4, three Cs-137 sources with a total

radioactivity of approximately ~2 µCi were used in the

experiment, stacked one on top of the other. As shown in

Fig. 5, the experimental environment was configured

identically to the simulation environment. A single

detector was used, and the distance between each detector

was set to 10 cm, allowing for movement and counting of

radiation. The distance between the radiation sources was

designed to be 5 cm, and the number of incident

radiations at each of 25 locations for 60 minutes was

acquired, and the number of incident radiations on each

detector was converted into a ratio and applied.

2.4. Location accuracy assessment

 The ratio of the radiation coefficient at each location of

the radiation spectroscopy obtained in the experiment was

used as the experimental data of the deep learning model

to track the location. As shown in Fig. 6, the error rate of

the location of each radiation source was defined as the

error between the actual location of the radiation source

and the location of the radiation source predicted by the

deep learning model, w, and was calculated by dividing it

by the total distance (system length (cm)) along which the

detectors were arranged, and is expressed by the

following equation [9].

error(%) =  × 100 (1)

3. Results

A deep learning model was trained using labeled data,

w cm 

system length cm 
----------------------------------------------

Fig. 4. (Color online) Three Cs-137 sources were stacked for

the experiment, and the sources were placed at the central

height of the detector to ensure measurement accuracy.

Fig. 5. (Color online) Experimental design and actual setup for

radiation source localization. (a) Simulation-based schematic

of detector and source placement. (b) Image of the experimen-

tal setup using a Cs-137 source with NaI(Tl) detectors.

Fig. 6. (Color online) Error evaluation of the deep learning–

based source localization. The distance w represents the dis-

crepancy between the actual source position and the position

predicted by the deep learning model, and the error rate was

obtained by normalizing this distance with respect to the over-

all detector array length.
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which included coordinates and radiation count ratios for

each location obtained through simulation. The radiation

count ratios at all locations obtained through experiments

were then used as inputs to evaluate the error rate of a

deep learning-based radiation source location tracking

system.

Fig. 7 shows the actual locations of the radiation

sources marked with red markers, and the coordinates

resulting from the deep learning-based location tracking

are marked with blue square markers. Excellent agreement

between the actual and tracked locations was observed at

all locations.

Table 1 shows the error rates for each location. The

maximum predicted accuracy was 99.73%, while the

minimum predicted accuracy was 89.46%. Of the 25

locations, 19 were predicted with an accuracy of 95% or

higher, with an error distance of less than 1 cm,

demonstrating extremely high accuracy. Accuracy was

particularly high at (10,15) and (20,15), with accuracy

rates of 99.73% and 99.43%, respectively. The location

with the lowest error rate was (5,5), with a location

accuracy of 89.46%. The average accuracy across all

locations was 95.65 ± 2.65%.

4. Discussion and Conclusions

Various environmental radiation monitoring methods

are being developed for radiation detection, making them

essential for rapid evacuation in the event of a radioactive

material leak. Currently, gamma cameras are used to

image radiation source locations. These require collimators

with very small apertures, limiting location detection and

rapid evacuation through imaging. To overcome these

limitations, a radiation source location tracking system

using a non-collimating spectroscopy detector was

developed for rapid detection and source identification.

Research has also been conducted to improve accuracy

and achieve faster source location detection than existing

methods. To achieve this, a deep learning model was

trained based on GATE simulation data and applied to

experimental data acquired using an actual NaI(Tl)

radiation spectroscopy detector to estimate the location of

the radiation source. To compensate for the absolute

differences between the simulation and experimental data,

coefficient values   were converted to ratios for training

and prediction. By labeling the ratios and X and Y

positions before application, a deep learning-based

location tracking model was implemented that can be

directly applied to real-world data. The results of this

study confirmed a very high accuracy of 95.65 ± 2.65%

for the deep learning model, demonstrating a high

accuracy of over 95% at 19 locations, and over 99% in

position prediction accuracy at two locations. However,

the error rate was relatively high at a distance of 5 cm

from the detector. This is considered to be due to the

difference in the radiation count generated due to the

difference in the area where the radiation emitted from

the source interacts with the scintillator at close distances

from the detector. The Cs-137 source used in the

experiment has a very low activity of approximately 2

μCi, so a long measurement time was required to acquire

a large amount of experimental data. However, the

photopeak count value was stable because it was higher

than the background radiation level. In addition, the use

Fig. 7. (Color online) Comparison of the original source posi-

tions with those predicted by the deep learning model. Red

markers represent the true source locations, while blue mark-

ers denote the positions estimated by deep learning.

Table 1. Error rate of deep learning estimation relative to orig-

inal positions.

DL Position error rate(%)

 X

Y
0 5 10 15 20 Average

5 7.87 10.54 8.31 8.05 8.55 8.66

10 2.06 1.27 3.43 4.48 7.83 3.81

15 4.18 3.46 0.27 3.04 0.57 2.30

20 4.03 4.56 4.72 2.55 1.64 3.50

25 3.87 4.27 3.07 2.47 3.58 3.45

Average 4.40 4.82 3.96 4.12 4.43 4.35
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of a radiation spectroscopy detector allowed for the

distinction of different radiation sources through their

photopeaks, enabling the location of each source to be

tracked with high accuracy.

This study was conducted in the laboratory to verify

feasibility before conducting a real-world demonstration.

Therefore, the experimental area was set to an area where

implementation was feasible. Furthermore, the activity of

the available radiation sources was very low, limiting the

experimental area. Based on this study, future research

will conduct experiments in a wider area to determine

applicability. Furthermore, since the current study focuses

on a single radiation source, further research on the

diffusion of radioactive liquids is necessary. Therefore,

we plan to continue this research in the future. 

By reproducing accident scenarios, such as radioactive

material leaks, through simulations and building data

based on these simulations to design a deep learning-

based location tracking system, it is expected that human

radiation exposure can be minimized by quickly

identifying the location of radiation sources in real-world

situations.
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