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To enhance the areal density (AD) of magnetic recording technology, shingled magnetic recording (SMR),

which overlaps adjacent tracks, has been proposed and extensively studied. The strong intertrack interference

(ITI) is a major difficulty that needs to be overcome. Therefore, the two-track reading with a wide-track reader

for the shingled track recording technique achieves the clear amplitude in two-track recording due to the

longer bit length of magnetization over the regular single-track reading. Track misregistration (TMR);

however, is one of the key concerns in this technique that may deteriorate the system’s performance, which

refers to the misalignment between the center of the read head and the desired track. To address this issue, this

study proposes the TMR prediction scheme and detector with the utilization of an Expectation-Maximization

(EM) algorithm to process the readback signals obtained from the wide-track reader. Simulation results

indicate that, at an AD of 2.0 Tb/in2, the EM-based TMR prediction method achieves strong prediction

performance, while the EM-based data detector further enhances system performance by reducing the bit-

error rate in shingled track recording systems.
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1. Introduction

Shingled magnetic recording (SMR) is an advanced

data storage technology designed to increase areal density

(AD) of hard disk drives (HDDs) [1]. It writes data tracks

by partially overlapping them, similar to the way shingles

are layered on a roof. This overlapping enables the

formation of narrower tracks, allowing more data to be

stored on the same platter surface and thereby enhancing

AD. However, the reduced track width increases inter-track

interference (ITI) and makes the system more susceptible

to track misregistration (TMR)—a condition where the

read-head deviates from the center of the narrow track

during data retrieval. This misalignment significantly

degrades the read performance of magnetic recording

systems [2-4].

In conventional HDDs, TMR is typically monitored

through a servo mechanism [5] that reads dedicated servo

data embedded on the disk surface. While effective, this

approach consumes valuable disk space—typically 3% to

5% [6]—that could otherwise be used for user data. To

address this limitation, recent research has focused on

TMR prediction methods that operate without servo data,

aiming to recover accurate positional information directly

from the readback signal [6-8].

Recent advances in magnetic recording have increasingly

focused on data-driven and machine-learning-assisted

strategies to improve TMR estimation under severe

interference conditions. Multi-reader signal analysis has

been used to reconstruct the position error signal (PES)

via adaptive equalizer coefficients in SMR systems [6].

Adaptive 2D equalization has also been proposed, where

TMR levels are estimated from the ratio of 2D equalizer

coefficients and mitigated using asymmetric equalization

targets [7]. In addition, clustering-based approaches such

as K-means have demonstrated promising results by

estimating TMR from the centroid of readback signals,

followed by TMR-aware equalization and detection [8].

These methods have contributed to notable progress.

However, these mentioned techniques [7, 8] were proposed
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for bit-patterned media recording.

In this study, therefore, we propose a TMR prediction

and mitigation framework based on the Expectation-

Maximization (EM) algorithm for granular media. The

system configuration adopts staggered alignment of

adjacent tracks [9], as shown in Fig. 1. First, an EM-

based TMR predictor estimates the TMR level directly

from the readback signal. The estimated TMR level is

then used to select suitable one-dimensional (1D) equalizer

coefficients. Subsequently, an EM-based data detector

performs probabilistic clustering for bit detection. By

jointly applying the EM algorithm in both the prediction

and detection stages, the proposed method effectively

models variations in the readback signal and enhances

robustness against TMR-induced distortions. This unified

two-stage EM-based approach results in improved bit-

error rate (BER) performance in staggered SMR systems.

The remainder of this paper is structured as follows:

Section 2 introduces the staggered SMR recording model.

Section 3 presents the proposed EM-based TMR predictor

and data detector. Section 4 discusses the simulation

results, and Section 5 concludes the paper.

2. Channel Model

The staggered SMR system model is illustrated in Fig.

2, which presents a block diagram outlining the data flow

from the recording process to data retrieval.

In the pre-coding process, the input user bit sequence

{ak}, consists of 8,160 bits, each with value ak ∈ {+1,

-1}, where k denotes the bit index. This sequence is first

passed through a pre-coding stage, defined in Table 1 [9],

to generate the pre-coded sequence {ck}. The pre-coding

process is a state-dependent mapping that utilizes the

current input bit ak and the previous output bit ck-1. For

instance, when ak = +1, the resulting output ck is

determined based on the value of ck-1: if ck-1 = -1, then ck

is set to -1; conversely, if ck-1 = +1, then ck = +1 [9].

In the recording sequences, the pre-coded sequence {ck}

is divided into two subsequences that are the even-

indexed sequence {ck,0} and the odd-indexed sequence

{ck,1}. These subsequences are recorded on the lower and

upper tracks, respectively.

With respect to the recording medium, this study

considers the SMR system illustrated in Fig. 1. The

separated pre-coded sequences {ck,0} and {ck,1} are

written to a pair of considered tracks in a staggered

pattern. The two tracks are offset by half a bit length,

allowing for higher track density. This study focuses on

an SMR configuration with an AD of 2.0 terabits per

square inch (Tb/in2), where the track-width {Tz} and the

bit-length {Tx} are set to 14.75 nanometers (nm) and 22.0

nm, respectively.

In the reading process, to retrieve the continuous

readback signal {r(t)}, the wide-track reader is positioned

at the midpoint between the upper and lower tracks, as

illustrated in Fig. 1. This placement enables simultaneous

reading of both tracks. The resulting signal is generated

through a 2D convolution of the reader’s sensitivity

function [10] with the magnetization pattern of the

granular media, also shown in Fig. 1. To suppress out-of-

Fig. 1. (Color online) Recorded magnetization allocation in

granular media using the two-track reading with a wide-track

reader.

Fig. 2. (Color online) Channel model of the SMR systems with the proposed EM-based TMR predictor and detector.

Table 1. Pre-coding logic for input-to-output bit mapping.

k 
th Input bit ak k-1th output bit (ck-1) k 

th Output bit (ck)

+1 -1 -1

+1 +1 +1

-1 +1 -1

-1 -1 +1
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band noise, the readback signal is filtered using a seventh-

order Butterworth low-pass filter (LPF) with a cutoff

frequency of 0.50/Tx. The filtered signal is then over-

sampled at a rate of 0.50Tx, starting at one-fourth of the

bit period (0.25Tx) as indicated by the red dots in Fig. 1,

to produce the discrete-time readback signal {rk}. This

sampling scheme differs from that of the transition-based

sampling (green crosses in Fig. 1, starting at 0.50Tx), as

illustrated in Fig. 3.

Fig. 3(a) and 3(b) present the scatter plots of the

readback signals obtained from the 0.25Tx and 0.50Tx

sampling schemes, respectively. The x- and y-axis

represent the amplitudes of the even and odd readback

sequences at a TMR level of 0 nm without electronic

noise. The 0.25Tx scheme exhibits fewer and more

compact clusters, whereas the 0.50Tx scheme produces

more dispersed clusters under noise. Therefore, the 0.25Tx

sampling scheme is adopted in this study due to its clearer

clustering characteristics, which are more suitable for

clustering-based TMR estimation.

The TMR mitigation process consists of two main

components: TMR level prediction and data detection,

both based on the EM algorithm, which is discussed

further in Section 3. The discrete readback signal {rk} is

first fed to the EM-based TMR predictor, which predicts

the TMR level in the system. Based on this predicted

level, appropriate 1D equalizer coefficients are selected to

equalize the readback signal, producing the equalized

sequence {sk}. This sequence is then processed by the

proposed EM-based data detector, which simultaneously

retrieves the output bit sequence {âk} and compensates

for the effects of TMR, thereby improving the overall

BER performance.

3. Proposed Methods

The proposed method consists of two main components,

described as follows:

3.1. EM-based TMR predictor

The TMR level is estimated using the EM algorithm—

an iterative procedure commonly used to compute the

maximum likelihood estimates of parameters (e.g., means

and variances) in statistical models involving latent

(unobserved) variables [11].

Predetermined centroid method: The discrete readback

signal {rk}, consisting of 8,160 samples obtained from the

SMR system under various TMR levels (i.e., TMR ∈

{-3.0, -2.5, …, 0, …, 2.5, 3.0} nm), is reshaped into a

2×4,080 matrix by separating the samples into odd- and

even-indexed values. Each column of this matrix forms a

2D data point, which serves as input for clustering using

the EM algorithm, resulting in predetermined centroids

{ĈTMR} illustrated in Table 2.

The EM algorithm operates iteratively through two

primary steps: the expectation step (E-step) and the

maximization step (M-step). The E-step calculates the

probability that each 2D data point belongs to one of the

initial clusters (centroids). In this case, seven clusters are

defined as {[-2, -2], [-2, 0], [0, -2], [0, 0], [0, +2], [+2, 0],

[+2, +2]} corresponding to the seven possible TMR

levels. The probability distribution in the E-step is

modeled using the normal probability density function

(PDF), expressed as follows:

, (1)

where x represents a column vector from the readback
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Fig. 3. (Color online) The scatting plot of the readback signal,

for (a) 0.25T
x
 and (b) 0.50T

x
 sampling scheme.
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signal matrix, corresponding to a 2D data point. The

initial mean (centroid) of x is denoted by μ, and the initial

standard deviation is set to σ = 1.

In the M-step, the expected log-likelihood calculated

during the E-step is maximized to update the cluster

centroids, thereby improving clustering accuracy. This

process is repeated iteratively until convergence is

achieved. Fig. 4(a) presents an example of the 2D scatter

plot of the readback signal clustered using the EM

algorithm, along with the initial centroids, under a TMR

condition of 2.0 nm.

TMR prediction method: the readback signal with

unknown TMR is clustered by the proposed EM-based

TMR predictor, producing the predicted centroids denoted

by {CTMR} matrix as follows:

. (2)

1,1 1,2

2,1 2,2

TMR

7,1 7,2
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Table 2. The centroid list for TMR, based on the EM algorithm, ranges from -3.0 nm to 3.0 nm.

Centroid list from EM algorithm

ĈTMR=0.0 nm ĈTMR=0.5 nm ĈTMR=1.0 nm ĈTMR=1.5 nm ĈTMR=2.0 nm ĈTMR=2.5 nm ĈTMR=3.0 nm

-1.79 -1.79 -1.78 -1.78 -1.77 -1.77 -1.76 -1.75 -1.74 -1.74 -1.72 -1.72 -1.70 -1.70

-1.43 -0.20 -1.43 -0.26 -1.43 -0.31 -1.43 -0.36 -1.43 -0.42 -1.42 -0.47 -1.41 -0.52

-0.25 -1.45 -0.30 -1.45 -0.35 -1.45 -0.40 -1.45 -0.45 -1.45 -0.50 -1.44 -0.55 -1.43

+0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

+0.24 +1.44 +0.29 +1.45 +0.35 +1.45 +0.40 +1.45 +0.45 +1.45 +0.50 +1.44 +0.55 +1.43

+1.43 +0.20 +1.43 +0.26 +1.43 +0.31 +1.43 +0.36 +1.43 +0.41 +1.42 +0.46 +1.41 +0.52

+1.79 +1.79 +1.78 +1.78 +1.77 +1.77 +1.76 +1.75 +1.74 +1.74 +1.72 +1.72 +1.70 +1.70

ĈTMR=0.0 nm ĈTMR=-0.5 nm ĈTMR=-1.0 nm ĈTMR=-1.5 nm ĈTMR=-2.0 nm ĈTMR=-2.5 nm ĈTMR=-3.0 nm

-1.79 -1.79 -1.80 -1.80 -1.80 -1.80 -1.81 -1.80 -1.81 -1.80 -1.81 -1.80 -1.80 -1.80

-1.43 -0.20 -1.42 -0.15 -1.42 -0.10 -1.42 -0.05 -1.41 -0.00 -1.41 +0.05 -1.40 +0.10

-0.25 -1.45 -0.20 -1.44 -0.15 -1.44 -0.10 -1.44 -0.04 -1.44 +0.00 -1.43 +0.05 -1.42

+0.00 +0.00 +0.00 +0.01 +0.00 +0.00 +0.00 +0.00 +0.01 +0.00 +0.00 +0.00 +0.01 +0.00

+0.24 +1.44 +0.19 +1.44 +0.14 +1.44 +0.09 +1.43 +0.04 +1.43 -0.01 +1.43 -0.06 +1.42

+1.43 +0.20 +1.42 +0.15 +1.42 +0.10 +1.42 +0.05 +1.41 -0.01 +1.41 -0.05 +1.40 -0.10

+1.79 +1.79 +1.80 +1.80 +1.80 +1.80 +1.80 +1.80 +1.80 +1.80 +1.80 +1.80 +1.80 +1.79

Fig. 4. (Color online) 2D scatter plots clustered using the EM algorithm: (a) discrete readback signal and (b) equalized readback

signal.
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The predicted TMR level {TM̂R} is determined by

comparing the Euclidean distance {dTMR} between the

predicted centroids of the readback signal {CTMR} and the

sets of predetermined centroids {ĈTMR = -3.0 nm, …, ĈTMR =

3.0 nm}; the TM̂R is selected by ĈTMR, which provides the

minimum distance according to the following equation:

, (3)

where q and p are the column and row indices of the

matrix, respectively. After predicting the TMR level, the

corresponding 1D equalizer coefficients are selected

based on the estimated value to enhance data clustering

before detection. Fig. 4(a) and 4(b) compare the scatter

plots of the discrete and equalized readback signals,

respectively. After equalization, the data clusters become

more compact and clearly separated. This improvement

facilitates data clustering in the EM-based detector and

contributes to the overall enhancement in BER performance.

3.2. EM-based data detector

During the data detection stage, the equalized readback

signal {sk} is processed by the proposed EM-based data

detector, which employs the EM algorithm for clustering.

The process is initialized using initial centroid values as

described in Section 3.1, resulting in seven clusters.

To reconstruct the output bit sequence {âk}, each data

point is assigned to its nearest updated centroid. The final

output bit values are then determined based on the

centroid-to-bits mapping specified in Table 3, which

outlines the initial centroids and their associated output

bits representations used throughout the detection process.

4. Simulation Results

4.1. TMR prediction accuracy

Fig. 5 illustrates the TMR prediction accuracy of the

proposed EM-based TMR prediction versus the various

electronic noise levels. The following equation calculates

the prediction accuracy:

,
(4)

where TMR denotes the actual track misregistration level

in the system, and the electronic noise levels in terms of

signal-to-noise ratio (SNR), which is modeled as follows:

, (5)

where A = 1 donates the power of the readback signal,

and σ is the standard deviation of the additive white

Gaussian noise (AWGN). The shaded blue and shaded

broken red lines illustrate the TMR prediction accuracy at

both upward and downward TMR directions, respectively,

i.e., TMR ∈ {-3.0, -2.5, …, 0, …, 2.5, 3.0} nm across

various SNR levels of {2, 4, 6, …, and 12} decibels

(dBs). The EM algorithm achieves an overall prediction

accuracy exceeding 70%, demonstrating strong robustness

in distinguishing TMR effects. The downward TMR

direction exhibits a similar trend to the upward case but

yields slightly lower accuracy across all TMR and SNR

conditions. This difference arises from the non-uniform

magnetic grain structure of the granular media, which

introduces asymmetry in the readback signal characteristics

between directions. Although the prediction accuracy

decreases gradually as the TMR magnitude increases and

the SNR decreases, the proposed method consistently

maintains accuracy above 70% even at an SNR of 2 dB,

 

TMR TMR TMR

2

, ,1 1

7 2

ˆEuclidean Distance( , )

ˆ
p q p qp q
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Table 3. The initial centroid-to-bits mapping is used in the data detection process.

Centroid-to-bits output mapping

Initial centroids [-2, -2] [-2, 0] [0, -2] [0, 0] [0, +2] [+2, 0] [+2, +2]

Output bits [+1, +1]T [+1, -1]T [-1, +1]T [-1, -1]T [-1, +1]T [+1, -1]T [+1, +1]T

Fig. 5. (Color online) TMR prediction accuracy at various

SNR levels under an AD of 2.0 Tb/in2.
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underscoring its potential for practical implementation.

4.2. TMR mitigation performance

This section evaluates the TMR mitigation performance

of the proposed EM-based data detector under an AD of

2.0 Tb/in2. Three systems are considered: “Proposed

system”: A staggered SMR system employing both the

EM-based TMR predictor and EM-based data detector.

“System I”: A baseline staggered SMR system without

any TMR mitigation. The equalizer coefficients are

designed based on a TMR level of 0 nm, and a simple

threshold detector is used for data detection. “System II”:

a staggered SMR system where the TMR prediction is

assumed to be 100% accurate, the equalizer coefficients

are designed to match the actual TMR level, and a simple

threshold detector is used for data detection. 

In this study, a simple threshold detector is employed

for both “System I” and “System II.” Although PRML

detection is generally effective for partial-response (PR)

class signals, the readback waveform under the 0.25Tx

sampling scheme does not exhibit a PR2-like characteristic,

which typically presents five sample levels {−2, −1, 0,

+1, +2}. Instead, it exhibits a three-level behavior {−2, 0,

+2}. Consequently, PRML detection offers no performance

advantage in this configuration. In contrast, the threshold

detector aligns better with the signal characteristics of the

0.25Tx sampling scheme and achieves superior BER,

particularly under high TMR conditions.

Fig. 6 presents the BER performance comparison

between the upward and downward TMR directions of

the proposed system. Due to the non-uniformity of

magnetic grains in the recording medium, the two

directions do not yield identical BER results, although

they exhibit the same overall trend. Therefore, the BER

comparison among the “Proposed system,” “System I,”

and “System II” is reported only for the upward TMR

direction.

Fig. 7 presents a BER performance comparison among

these three systems. The results demonstrate that the

“Proposed system” consistently outperforms the other

two, particularly at higher SNR levels where the

performance gain becomes more pronounced. 

The threshold detectors in “System I” and “System II”

operate in a 1D domain, making bit-by-bit decisions

based on amplitude comparison with a fixed threshold.

While simple, this approach cannot effectively capture

inter-track interference or noise correlation. In contrast,

the proposed EM-based data detector jointly processes

readback signals from the upper and lower tracks as 2D

data points, enabling multidimensional clustering of

patterns such as {(-1, -1), (-1, +1), (+1, -1), (+1, +1)}.

This allows the detector to exploit inter-track relationships

and improve robustness against noise and TMR-induced

distortions.

Furthermore, as TMR severity increases, the performance

gap between the “Proposed system,” the “System I,” and

the “System II” widens, indicating the effectiveness of the

EM algorithm in both TMR prediction and data detection,

making it a strong candidate for integration into next-

generation SMR systems where TMR variability poses a

significant challenge to reliable data retrieval.

Fig. 6. (Color online) BER performance comparison of the

“Proposed system” for upward and downward TMR directions

under various TMR and SNR levels.

Fig. 7. (Color online) BER performance comparison between

the Proposed system, System I, and System II at various TMR

and SNR levels under the AD of 2.0 Tb/in2.
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5. Conclusion

This study investigates track misregistration (TMR)

prediction and mitigation in shingled magnetic recording

(SMR) systems using the Expectation-Maximization

(EM) algorithm under an areal density (AD) of 2.0 Tb/in².

The proposed EM-based TMR predictor consistently

achieves over 70% accuracy, demonstrating robustness

under severe TMR conditions and high electronic noise

levels. Additionally, the EM-based data detector effectively

mitigates TMR effects, delivering superior bit-error rate

(BER) performance compared to both “System I” and

“System II”. These findings highlight the EM algorithm’s

strong potential for accurate TMR estimation and reliable

data recovery, making it a promising solution for next-

generation SMR systems facing increasing TMR variability.
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