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This study investigated the effects of body mass index (BMI)-related noise simulation on coronary artery

calcium score (CACS) and liver fat quantification in coronary artery computed tomography (CT) images,

which are acquired using X-ray-based electromagnetic radiation. Noise maps extracted from obese patients

were added to normal-weight images to generate virtual high-BMI conditions, allowing assessment of noise

effects independent of anatomical differences. CACS was evaluated at four locations, and liver fat was

quantified using liver attenuation, liver-to-spleen (L/S) ratio, and L/S difference. Across the virtual high-BMI

datasets, approximately 71% of cases showed increased CACS and 57% demonstrated upward changes in risk

rank. Liver fat assessment decreased by up to 1.98%, 6.69%, and 19.02% in liver attenuation, L/S ratio, and L/

S difference, respectively. These findings indicate that BMI-related noise, arising from increased attenuation of

electromagnetic X-ray photons, can influence quantitative CT metrics and should be considered in clinical CT

interpretation.
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1. Introduction

Cardiovascular disease is one of the leading causes of

death worldwide, accounting for approximately 19.41

million deaths in 2021. Among these, coronary artery

disease (CAD) accounts for the largest proportion, with

approximately 370,000 deaths in the United States by

2022 caused by CAD [1].

Coronary artery calcification (CAC) is considered a

major imaging marker reflecting CAD progression, and

coronary artery computed tomography (CT) is used to

quantify the coronary artery calcium score (CACS) using

the Agatston score to assess cardiovascular risk [2-4]. The

CACS, based on the predominantly used Agatston score,

is generally measured as high attenuation areas exceeding

130 Hounsfield units (HU) on CT images as calcified

lesions; it calculates the score by multiplying the lesion

area and the density factor based on the maximum HU

value, classifies the patient’s risk level, and sets up an

appropriate treatment plan. This method reflects both the

size and density of calcified lesions and is widely used in

clinical settings as a standard quantification tool [5-7].

Coronary artery CT for CACS measurement is

generally conducted under standardized conditions. CT

imaging generates X-ray photons through the acceleration

of electrons toward a metal target in an X-ray tube, a

process fundamentally governed by electromagnetic X-

ray. However, in obese patients, increased body fat tissue

results in increased X-ray scattering and attenuation,

leading to increased image noise. This noise can appear
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as a high-density signal exceeding HU 130 in the image

and may be recognized as similar to actual calcified

lesions, resulting in an overestimated Agatston score [8].

Recent preliminary studies highlighted the relationship

between CAD (particularly CAC) and fatty liver. As a

representative disease, non-alcoholic fatty liver disease

(NAFLD) is closely associated with various cardio-

vascular risk factors, including metabolic syndrome,

insulin resistance, hypertension, and dyslipidemia. In

addition, numerous cohort studies demonstrated that fatty

liver disease, including NAFLD, is also associated with

an increased incidence of CAC and CAD [9-11].

In clinical practice, for a quantitative assessment of

liver fat based on CT images, the absolute liver attenu-

ation value, liver-to-spleen ratio (L/S ratio), and liver-to-

spleen difference (L/S difference) are generally measured

on abdominal CT images without contrast enhancement

[12-14]. According to the results of one study, the

attenuation value of the overall liver can be represented in

the upper part of the liver, as shown in coronary artery

CT images [15]. Because CT attenuation arises from

electromagnetic interactions between X-ray photons and

tissue electrons, variations in liver fat content can directly

alter the measured HU values. However, no studies have

quantitatively evaluated the liver attenuation using

coronary artery CT images, and few studies have

analyzed the relationship between the CACS and liver fat

assessment methods. In addition, although numerous

studies have previously compared CACS differences

between normal-weight and obese patients, simultaneous

evaluation of liver fat and CACS using coronary artery

CT has not been conducted [16-18].

Therefore, in this preliminary study, we applied three

liver fat quantification methods to normal-weight patient

images and their corresponding virtual high-body mass

index (BMI) conditions generated using BMI-related

noise simulation. This approach enabled us to compare

and evaluate the tendencies of CACS and liver fat

assessment methods in response to BMI-related noise

while excluding anatomical differences.

2. Materials and Methods

2.1. Computed tomography image acquisition

This retrospective study was approved by the Institutional

Review Board of Severance Hospital (4-2023-1221),

which waived the need for informed consent owing to its

retrospective design.

Coronary artery CT images were acquired from seven

normal-weight patients using a Somatom Definition Force

scanner (Siemens Healthineers, Erlangen, Germany). The

primary scan parameters were as follows: tube voltage of

100 kVp, tube current of 80 mAs, scan time of 0.14 s,

rotation time of 0.25 s, slice thickness/increment of 3.0/

1.5 mm, field of view of 300 mm. The reconstruction

kernel was Qr36f, and a reconstruction window set to

mediastinum. The images were reconstructed in an 512 ×

512 matrix using sequence scan mode in the craniocaudal

direction.

According to the World Health Organization (WHO)

guidelines, the classification of patient groups is as

follows: normal-weight is defined as a BMI of ≤ 25 kg/

m2, and obesity is defined as a BMI of ≥ 30 kg/m2 [19].

Therefore, in this study, we followed the WHO guidelines

and selected 15 patients with a BMI of 27-39 kg/m2 as the

obese group.

In addition, to analyze the effects of image noise caused

by an increase in BMI and exclude the influence of tissue

structure or anatomical differences in the images, noise

maps extracted from the images of 15 obese patients were

added to the coronary artery CT images of normal-weight

patients to generate virtual high-BMI conditions.

2.2. Modeling of Poisson-Gaussian mixture noise esti-

mation algorithm

To extract noise from CT images of obese patients, we

modeled and applied a Poisson–Gaussian mixed noise

algorithm [20, 21]. To extract noise, the CT images of the

obese patients were divided into uniform patches, and the

mean and standard deviation of each patch were

estimated. The global functional relationship between the

image intensity and noise standard deviation was deter-

mined using a regression analysis of the estimated values

for each patch. The equations for the Poisson-Gaussian

mixture model are given in Eqs. (1) and (2):

A(x) = z(x) + n(z(x)) (1)

n2(z(x)) = z(x) +  2 (2)

where x represents the pixel location, z(x) represents the

noise-free signal value at that location, and A(x) represents

the observed degraded signal at the same location.

Furthermore, n(z(x)) denotes the standard deviation of the

noise distribution, and  is the independent random noise

with a mean of 0 and a standard deviation of 1.

Additionally,  represents the signal-dependent Poisson

noise and  represents the standard deviation of the

signal-independent Gaussian noise.

To estimate the values of  and , we employed a

patch-based noise parameter estimation method that

demonstrated high accuracy in previous studies. For noise

level estimation, homogeneous patches of the image were

identified using a nonparametric statistical method,
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specifically Kendall’s tau rank correlation, which quantifies

the consistency of pixel intensity relationships within a

patch [22]. Patches with high homogeneity, in which

variations were assumed to arise primarily from noise,

were selected on the basis of this measure. The Kendall’s

tau was computed using Eq. (3):

T = CD/C + D' (3)

where C and D are the number of concordant and

discordant pairs, and T is in the range of -1 to 1. The

homogeneous patches were 16 × 16 pixels in size and

were detected by averaging the four directional T values.

Each selected homogeneous patch was characterized by

its mean () and standard deviation (). These statistical

values were used to model a noise estimation model, as

described in Equations (4–6), and finally, optimal values

of the noise parameters  and 2 were estimated:

(4)

 (5)

 (6)

where, f represents the noise level parameter vector that

satisfies the feasible sets , and U and V are mean

of N × 2 and variance of N × 1 matrix, respectively.

The minimization problem was solved using a pre-

conditioned primal-dual algorithm, which enabled the

estimation of Poisson noise  and Gaussian noise  2. The

values of  and  2 extracted from obese patients are

shown in Table 1, and the overall flowchart is shown in

Fig. 1.

2.3. Calculation of coronary artery calcium scoring

To evaluate the effect of BMI-related noise on the

CACS, noise extracted from actual obese patients was

added to the coronary CT images of normal-weight

patients to obtain virtual high-BMI conditions. A

radiologist with 14 years of experience independently

performed CACS on both the normal-weight and virtual

high-BMI conditions. The calcium score was measured

using syngo.via (version VB40; Siemens Healthcare,

Erlangen, Germany), which automatically highlights and

identifies areas with HU values exceeding 130, and

calculates the Agatston score based on the mass and

volume information of those areas.

The CACS analysis was performed at four locations:

the left main trunk, left anterior descending artery,

circumflex artery, and right coronary artery.

2.4. Assessment of liver fat content

To quantitatively evaluate changes in liver fat content

under BMI-related noise simulation, three CT-based liver

fat assessment methods were measured and compared

between normal-weight and virtual high-BMI conditions:

liver attenuation, L/S ratio, and L/S difference [12, 14,

23]. Liver attenuation refers to the average HU value

measured within the liver, with lower HU values

indicating higher fat accumulation. The L/S ratio was

calculated by dividing the mean liver HU value by the

mean spleen HU value, which reflected the relative

attenuation between the two organs. The L/S difference

was defined as the difference between the mean liver HU

and mean spleen HU, representing the absolute attenuation

difference.

To obtain consistent measurements, ten CT slices

containing both the liver and spleen were selected for

each patient. In each image, four circular regions of

interest (ROIs) with fixed radii of 20 pixels were placed

in the liver, and one ROI was placed in the spleen. During

ROI definition, particular care was taken to include only

 f R
+



Table 1. Estimated Poisson () and Gaussian ( 2) noise

parameters extracted from computed tomography images of

obese patients.

Obese
Poisson parameter

 ()

Gaussian parameter

(2)

Patient 1 0.17 10.59

Patient 2 0.21 11.62

Patient 3 0.17 10.22

Patient 4 0.15 9.74

Patient 5 0.16 11.31

Patient 6 0.38 12.57

Patient 7 0.33 12.42

Patient 8 0.39 12.60

Patient 9 0.36 14.04

Patient 10 0.23 11.10

Patient 11 0.27 10.67

Patient 12 0.33 12.27

Patient 13 0.27 10.42

Patient 14 0.19 10.29

Patient 15 0.25 11.36

Average ± SD 0.26 ± 0.08 11.41 ± 1.17

Median 0.25 11.31

Minimum, Maximum [0.15, 0.39] [9.74, 14.04]

95% Confidence interval [0.21, 0.30] [10.77, 12.06]
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hepatic parenchyma. Consequently, vascular structures,

calcifications, perihepatic fat tissue, and biliary ductal

structures were systematically excluded. Furthermore, any

detectable focal lesions or masses were carefully omitted

to ensure that only representative liver tissue was

incorporated into the quantitative analysis. To verify the

appropriateness and consistency of these ROI placements,

all selected regions were additionally reviewed and

confirmed by a radiologist. The average values of these

ROIs were used to calculate the three evaluation methods.

Fig. 2 shows the locations of ROIs in the liver and spleen.

3. Results and Discussion

When comparing the CACS values between normal-

weight and virtual high-BMI conditions, five patients

exhibited higher CACS values in the simulated high-BMI

condition. The CACS values of normal-weight patients

Fig. 1. (Color online) Overview flowchart of the noise estimation and data acquisition process of virtual high-BMI conditions.

Fig. 2. (Color online) Region of interest (ROI) setting for measuring liver fat content: (a) normal-weight patient, and (b) virtual

high-BMI conditions. The four white circles represent the ROI of the liver, and the yellow circle represents the ROI of the spleen.
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ranged from 0.00 to 25.10; however, those of virtual high-

BMI conditions showed values up to 32.40. In particular,

in the case of patient 3, the CACS increased from 0.00 to

0.83, changing the risk rank from 1 to 2. In the case of

patient 4, the CACS also increased from 5.90 to 10.90, in

patient 5, the CACS increased from 8.40 to 11.56, and in

patient 6, the CACS increased from 9.80 to 13.80,

changing the risk rank from 2 to 3. We found that CACS

tended to appear higher when BMI-related noise was

generated in the CT images. The changes in the CACS of

normal-weight patients and virtual high-BMI conditions

are shown in Table 2 and Fig. 3.

To evaluate the relationship between BMI-related noise

and liver fat content based on CT images, three liver fat

content quantification methods—liver HU, L/S ratio, and

L/S difference—were evaluated in both normal-weight

and virtual high-BMI conditions (Fig. 4). In most

patients, decreases in all three methods were observed

under the virtual high-BMI condition, which may indicate

a potential influence of the added noise in liver fat

assessment.

The liver HU measurement indicated that six virtual

high-BMI conditions exhibited lower HU values compared

with the normal-weight patients. Patient 1, the only case

with a slightly higher HU value, showed a small rise from

65.64 to 65.79. In all patients except Patient 1, the

attenuation value of liver HU was reduced by an average

of 0.94%, and in Patient 2, the HU value was reduced by

a maximum of 1.98% from 70.08 to 68.70.

The L/S ratio values were observed to be lower in all

patients, with an average reduction of 1.74%. In particular,

Patient 3 showed a tendency to decrease from 1.37 to

1.28, with a maximum observed reduction of approxi-

mately 6.69%.

The L/S difference values were measured to be lower in

all patients, with an average reduction of 6.08%.

Specifically, in Patient 3, the L/S difference showed a

notable tendency to decrease from 17.28 to 13.99, and a

maximum reduction observed across all patients was

approximately 19.02%.

This study analyzed the effects of BMI-related noise on

CACS and liver fat quantification in coronary artery CT

images. By adding noise parameters derived from obese

patients to the images of normal-weight patients, we

aimed to assess the influence of noise alone, independent

of anatomical differences. A tendency toward higher

CACS values was noted in most virtual high-BMI

conditions, and several patients exhibited changes in risk

score, suggesting that BMI-related noise may have an

impact on clinical evaluation. In addition, liver attenuation,

L/S ratio, and L/S difference, which are commonly used

methods for CT-based quantification of liver fat content,

were generally measured to be lower under the virtual

high-BMI condition, which may reflect the influence of

increased BMI-related noise on liver fat assessment.

Among these methods, the L/S difference tended to show

the largest relative reduction, suggesting that it may be

more sensitive to BMI-related noise compared with the

other indices (Fig. 5).

Our studies showed that BMI-related noise in CT

Table 2. Coronary artery calcium score (CACS) and risk rank

evaluation values for normal-weight and virtual high-BMI

conditions. Risk rank categories were classified based on

CACS as follows: rank 1: CACS = 0; rank 2: 0 < CACS ≤

10; rank 3: 10 < CACS ≤  100; rank 4: 100 < CACS ≤  400;

rank 5: 400 < CACS

Patients Weight CACS Risk rank

Patient 1
Normal 0.00 1

High-BMI 0.00 1

Patient 2
Normal 0.50 2

High-BMI 0.50 2

Patient 3
Normal 0.00 1

High-BMI 0.83 2

Patient 4
Normal 5.90 2

High-BMI 10.90 3

Patient 5
Normal 8.40 2

High-BMI 11.56 3

Patient 6
Normal 9.80 2

High-BMI 13.80 3

Patient 7
Normal 25.10 3

High-BMI 32.40 3

Fig. 3. Results of coronary artery calcium score measurements

in normal-weight and virtual high-BMI conditions.
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images generates artificial high-intensity signals similar to

CAC, which can overestimate CACS values. Therefore,

advanced algorithms that separate noise artifacts from

CAC are required. Several previous studies have proposed

deep learning-based noise reduction methods that learn

the statistical distribution of noise using data-driven

training. The noise-to-noise training method enables the

model to learn noise characteristics without reference

images, showing promising results for noise reduction in

low-dose CT images [24, 25]. In addition, generative

adversarial networks have been used to model and

suppress noise by learning the complex distribution of

signals and noise through adversarial training and

preserving essential anatomical details [26, 27]. These

approaches highlight the potential of deep learning

models trained on noise statistics and characteristics.

Given that CT noise originates from the quantum

behavior of X-ray photons—a form of electromagnetic

radiation—deep learning models that explicitly learn

photon-statistics–based noise distributions may be

particularly effective for mitigating BMI-related noise

effects. Therefore, future studies could investigate whether

applying such methods to coronary artery CT using

datasets that include both calcified lesions and synthetic

noise patterns can reduce noise-induced biases in CACS

under high-BMI conditions.

Previous studies evaluated liver fat content on abdominal

CT images and investigated the association between liver

steatosis and CAD [28, 29]. Nevertheless, this is the first

study, to our knowledge, to quantitatively analyze the

association between CACS and liver fat content using

coronary artery CT images. Moreover, this study is the

first preliminary investigation to explore this association

and provides a foundation for future clinical validation.

Studies on automatic liver fat analysis using deep

learning have been actively conducted, but the selection

of ROIs in clinical practice is almost always performed

Fig. 4. Results of liver fat quantification methods between nor-

mal-weight and virtual high-BMI conditions: (a) liver attenu-

ation values (HU), (b) liver-to-spleen ratio (L/S ratio), and (c)

liver-to-spleen difference (L/S difference).

Fig. 5. Change rates (%) of coronary artery calcium score

(CACS), liver attenuation (HU), liver-to-spleen ratio (LSR),

and liver-to-spleen difference (LSD) between normal-weight

and virtual high-BMI conditions.
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manually. Many studies demonstrated that the selection of

three ROIs rather than a single ROI is useful for

quantitatively evaluating liver fat content in CT images

[13, 30]. In this study, the liver ROI, which could cause

variability, was manually selected. Therefore, in the

future, we plan to investigate which ROI ranges and sizes

affect liver fat content assessment. Moreover, we aimed to

develop an automatic ROI-localization model using deep

learning trained to identify the most stable ROI position.

As a preliminary study, this research observed the

tendencies of CACS and liver fat content assessment

methods under BMI-related noise simulation. However, it

has the limitation of analyzing only seven patients, and

the small sample size did not allow for statistical analysis.

Therefore, in future study, we plan to include a larger

cohort with more granular BMI stratification and to

perform formal statistical analyses to enhance the validity

and generalizability of our findings. Furthermore, an

explicit limitation of our study is that anatomical and HU

attenuation changes associated with true obesity were not

modeled. Although our approach enabled noise-focused

analysis, actual obese patients have anatomical variability

that can affect measurements, such as fat distribution

changes, organ displacement, and tissue heterogeneity

[31]. Therefore, further validation using actual obese

patient data is required, and future studies should

categorize patients according to BMI class (e.g., normal,

overweight, and obese) to investigate how anatomical and

noise characteristics jointly affect the CACS and liver fat

quantification. Accordingly, the present findings should

be interpreted as preliminary noise-induced HU attenuation

trends rather than as actual clinical effects of obesity.

This study was performed using CT data from a single

scanner, which limits its generalizability to other scanners

and clinical settings. Previous studies have shown that

liver HU values differ among various scanners because of

differences in reconstruction algorithms and tube currents

[32, 33]. Since electromagnetic wave attenuation and

photon flux vary depending on scanner design and

acquisition parameters, BMI-related noise characteristics

may also differ across systems. Accordingly, there is a

need for methods that can reduce scanner-related vari-

ability, and phantom-based HU normalization approaches

performed under coronary artery CT conditions may be

required to improve the consistency of attenuation

measurements across different systems. 

In this study, we used a noise estimation algorithm to

simulate BMI-related noise in coronary artery CT images

and modeled a noise estimation algorithm that separated

the noise components. Using this algorithm, we extracted

BMI-related noise characteristics from the obese patient

group and applied them to generate synthetic datasets.

Given these approaches, there is a need for approaches

that can reduce BMI-related noise while preserving

essential anatomical structures. Future study may require

exploring whether deep learning frameworks trained on

datasets that include calcified lesions alongside simulated

BMI-related noise patterns could help reduce noise-

induced bias in quantitative coronary CT analysis under

varying BMI conditions. 

Currently, coronary artery CT scans for CACS

measurements are usually performed using a standardized

clinical protocol, regardless of the patient’s body size, and

BMI is not considered. Therefore, diagnostic errors and

unnecessary treatment plans for patients are a possibility

[34]. Our results support the need for an image-

processing pipeline that accounts for BMI-related noise.

In particular, approaches that incorporate BMI as an

additional imaging factor, potentially including deep

learning-based noise correction strategies, may be needed

to enable more consistent interpretation under patient-

specific image conditions. In addition, exploring whether

quantitative liver fat assessment can be interpreted along

with CACS may provide useful insights for future

cardiovascular risk evaluation. Examining the relationship

between liver fat content and CACS in larger populations

could help clarify their potential complementary value in

risk stratification.

Overall, this study highlights the effects of BMI-related

noise on two clinically important imaging biomarkers.

Our findings suggest that CT-based assessments should

incorporate noise reduction and anatomical normalization

strategies to ensure accurate and personalized assessments.

This approach highlights the importance of incorporating

BMI-related noise considerations into CT image inter-

pretation and may serve as a useful basis for future

methodological refinements in quantitative imaging.

4. Conclusion

This study demonstrated that noise caused by increased

BMI-related noise can affect CACS and liver fat quanti-

fication in coronary artery CT images. The results showed

that the CACS increased in coronary artery CT images

under virtual high-BMI conditions, and that all liver fat

quantification methods tended to decrease, with the most

pronounced decrease observed in the L/S difference

method. Our analyses suggest that CT image noise

associated with high BMI may lead to overestimation of

the CACS and misclassification of risks in clinical

assessment. Given that CT acquisition uses X-ray electro-

magnetic radiation, increased BMI affects photon attenu-
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ation and contributes to the observed noise-related biases.

These findings highlight the need for noise reduction

techniques or BMI-based corrections in quantitative CT

image analysis.
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