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This study investigated the effects of body mass index (BMI)-related noise simulation on coronary artery
calcium score (CACS) and liver fat quantification in coronary artery computed tomography (CT) images,
which are acquired using X-ray-based electromagnetic radiation. Noise maps extracted from obese patients
were added to normal-weight images to generate virtual high-BMI conditions, allowing assessment of noise
effects independent of anatomical differences. CACS was evaluated at four locations, and liver fat was
quantified using liver attenuation, liver-to-spleen (L/S) ratio, and L/S difference. Across the virtual high-BMI
datasets, approximately 71% of cases showed increased CACS and 57% demonstrated upward changes in risk
rank. Liver fat assessment decreased by up to 1.98%, 6.69%, and 19.02% in liver attenuation, L/S ratio, and L/
S difference, respectively. These findings indicate that BMI-related noise, arising from increased attenuation of
electromagnetic X-ray photons, can influence quantitative CT metrics and should be considered in clinical CT

interpretation.
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1. Introduction

Cardiovascular disease is one of the leading causes of
death worldwide, accounting for approximately 19.41
million deaths in 2021. Among these, coronary artery
disease (CAD) accounts for the largest proportion, with
approximately 370,000 deaths in the United States by
2022 caused by CAD [1].

Coronary artery calcification (CAC) is considered a
major imaging marker reflecting CAD progression, and
coronary artery computed tomography (CT) is used to
quantify the coronary artery calcium score (CACS) using
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the Agatston score to assess cardiovascular risk [2-4]. The
CACS, based on the predominantly used Agatston score,
is generally measured as high attenuation areas exceeding
130 Hounsfield units (HU) on CT images as calcified
lesions; it calculates the score by multiplying the lesion
area and the density factor based on the maximum HU
value, classifies the patient’s risk level, and sets up an
appropriate treatment plan. This method reflects both the
size and density of calcified lesions and is widely used in
clinical settings as a standard quantification tool [5-7].
Coronary artery CT for CACS measurement is
generally conducted under standardized conditions. CT
imaging generates X-ray photons through the acceleration
of electrons toward a metal target in an X-ray tube, a
process fundamentally governed by electromagnetic X-
ray. However, in obese patients, increased body fat tissue
results in increased X-ray scattering and attenuation,
leading to increased image noise. This noise can appear
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as a high-density signal exceeding HU 130 in the image
and may be recognized as similar to actual calcified
lesions, resulting in an overestimated Agatston score [8].

Recent preliminary studies highlighted the relationship
between CAD (particularly CAC) and fatty liver. As a
representative disease, non-alcoholic fatty liver disease
(NAFLD) is closely associated with various cardio-
vascular risk factors, including metabolic syndrome,
insulin resistance, hypertension, and dyslipidemia. In
addition, numerous cohort studies demonstrated that fatty
liver disease, including NAFLD, is also associated with
an increased incidence of CAC and CAD [9-11].

In clinical practice, for a quantitative assessment of
liver fat based on CT images, the absolute liver attenu-
ation value, liver-to-spleen ratio (L/S ratio), and liver-to-
spleen difference (L/S difference) are generally measured
on abdominal CT images without contrast enhancement
[12-14]. According to the results of one study, the
attenuation value of the overall liver can be represented in
the upper part of the liver, as shown in coronary artery
CT images [15]. Because CT attenuation arises from
electromagnetic interactions between X-ray photons and
tissue electrons, variations in liver fat content can directly
alter the measured HU values. However, no studies have
quantitatively evaluated the liver attenuation using
coronary artery CT images, and few studies have
analyzed the relationship between the CACS and liver fat
assessment methods. In addition, although numerous
studies have previously compared CACS differences
between normal-weight and obese patients, simultaneous
evaluation of liver fat and CACS using coronary artery
CT has not been conducted [16-18].

Therefore, in this preliminary study, we applied three
liver fat quantification methods to normal-weight patient
images and their corresponding virtual high-body mass
index (BMI) conditions generated using BMI-related
noise simulation. This approach enabled us to compare
and evaluate the tendencies of CACS and liver fat
assessment methods in response to BMlI-related noise
while excluding anatomical differences.

2. Materials and Methods

2.1. Computed tomography image acquisition

This retrospective study was approved by the Institutional
Review Board of Severance Hospital (4-2023-1221),
which waived the need for informed consent owing to its
retrospective design.

Coronary artery CT images were acquired from seven
normal-weight patients using a Somatom Definition Force
scanner (Siemens Healthineers, Erlangen, Germany). The
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primary scan parameters were as follows: tube voltage of
100 kVp, tube current of 80 mAs, scan time of 0.14 s,
rotation time of 0.25 s, slice thickness/increment of 3.0/
1.5 mm, field of view of 300 mm. The reconstruction
kernel was Qr36f, and a reconstruction window set to
mediastinum. The images were reconstructed in an 512 X
512 matrix using sequence scan mode in the craniocaudal
direction.

According to the World Health Organization (WHO)
guidelines, the classification of patient groups is as
follows: normal-weight is defined as a BMI of <25 kg/
m?, and obesity is defined as a BMI of > 30 kg/m* [19].
Therefore, in this study, we followed the WHO guidelines
and selected 15 patients with a BMI of 27-39 kg/m? as the
obese group.

In addition, to analyze the effects of image noise caused
by an increase in BMI and exclude the influence of tissue
structure or anatomical differences in the images, noise
maps extracted from the images of 15 obese patients were
added to the coronary artery CT images of normal-weight
patients to generate virtual high-BMI conditions.

2.2. Modeling of Poisson-Gaussian mixture noise esti-
mation algorithm

To extract noise from CT images of obese patients, we
modeled and applied a Poisson—Gaussian mixed noise
algorithm [20, 21]. To extract noise, the CT images of the
obese patients were divided into uniform patches, and the
mean and standard deviation of each patch were
estimated. The global functional relationship between the
image intensity and noise standard deviation was deter-
mined using a regression analysis of the estimated values
for each patch. The equations for the Poisson-Gaussian
mixture model are given in Egs. (1) and (2):

Ax) = z(x) + n(z(x))o (D
m(z(x)) = az(x) + f° @)

where x represents the pixel location, z(x) represents the
noise-free signal value at that location, and A(x) represents
the observed degraded signal at the same location.
Furthermore, n(z(x)) denotes the standard deviation of the
noise distribution, and o is the independent random noise
with a mean of 0 and a standard deviation of 1.
Additionally, o represents the signal-dependent Poisson
noise and f represents the standard deviation of the
signal-independent Gaussian noise.

To estimate the values of « and S, we employed a
patch-based noise parameter estimation method that
demonstrated high accuracy in previous studies. For noise
level estimation, homogeneous patches of the image were
identified using a nonparametric statistical method,
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specifically Kendall’s tau rank correlation, which quantifies
the consistency of pixel intensity relationships within a
patch [22]. Patches with high homogeneity, in which
variations were assumed to arise primarily from noise,
were selected on the basis of this measure. The Kendall’s
tau was computed using Eq. (3):

T=C-D/C+D' 3)

where C and D are the number of concordant and
discordant pairs, and T is in the range of -1 to 1. The
homogeneous patches were 16 x 16 pixels in size and
were detected by averaging the four directional 7 values.
Each selected homogeneous patch was characterized by
its mean () and standard deviation (J). These statistical
values were used to model a noise estimation model, as
described in Equations (4-6), and finally, optimal values
of the noise parameters « and f* were estimated:

f* = arg min|lUf - VI, @

f=(z) 5)
my 1 &7
2

u=(* 1)v=[% (©)
pn 1 52

where, f represents the noise level parameter vector that
satisfies the feasible sets fe R", and U and V are mean
of N x 2 and variance of N x 1 matrix, respectively.

The minimization problem was solved using a pre-
conditioned primal-dual algorithm, which enabled the
estimation of Poisson noise « and Gaussian noise 5% The
values of « and S* extracted from obese patients are
shown in Table 1, and the overall flowchart is shown in
Fig. 1.

2.3. Calculation of coronary artery calcium scoring

To evaluate the effect of BMlI-related noise on the
CACS, noise extracted from actual obese patients was
added to the coronary CT images of normal-weight
patients to obtain virtual high-BMI conditions. A
radiologist with 14 years of experience independently
performed CACS on both the normal-weight and virtual
high-BMI conditions. The calcium score was measured
using syngo.via (version VBA40; Siemens Healthcare,
Erlangen, Germany), which automatically highlights and
identifies areas with HU values exceeding 130, and
calculates the Agatston score based on the mass and
volume information of those areas.

The CACS analysis was performed at four locations:
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Table 1. Estimated Poisson (o) and Gaussian (3?) noise
parameters extracted from computed tomography images of
obese patients.

Poisson parameter ~ Gaussian parameter

Obese @ )
Patient 1 0.17 10.59
Patient 2 0.21 11.62
Patient 3 0.17 10.22
Patient 4 0.15 9.74
Patient 5 0.16 11.31
Patient 6 0.38 12.57
Patient 7 0.33 12.42
Patient 8 0.39 12.60
Patient 9 0.36 14.04

Patient 10 0.23 11.10
Patient 11 0.27 10.67
Patient 12 0.33 12.27
Patient 13 0.27 10.42
Patient 14 0.19 10.29
Patient 15 0.25 11.36
Average + SD 0.26 +0.08 1141+1.17
Median 0.25 11.31
Minimum, Maximum [0.15,0.39] [9.74, 14.04]
95% Confidence interval [0.21, 0.30] [10.77, 12.06]

the left main trunk, left anterior descending artery,
circumflex artery, and right coronary artery.

2.4. Assessment of liver fat content

To quantitatively evaluate changes in liver fat content
under BMI-related noise simulation, three CT-based liver
fat assessment methods were measured and compared
between normal-weight and virtual high-BMI conditions:
liver attenuation, L/S ratio, and L/S difference [12, 14,
23]. Liver attenuation refers to the average HU value
measured within the liver, with lower HU wvalues
indicating higher fat accumulation. The L/S ratio was
calculated by dividing the mean liver HU value by the
mean spleen HU value, which reflected the relative
attenuation between the two organs. The L/S difference
was defined as the difference between the mean liver HU
and mean spleen HU, representing the absolute attenuation
difference.

To obtain consistent measurements, ten CT slices
containing both the liver and spleen were selected for
each patient. In each image, four circular regions of
interest (ROIs) with fixed radii of 20 pixels were placed
in the liver, and one ROI was placed in the spleen. During
ROI definition, particular care was taken to include only
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Fig. 1. (Color online) Overview flowchart of the noise estimation and data acquisition process of virtual high-BMI conditions.

hepatic parenchyma. Consequently, vascular structures,
calcifications, perihepatic fat tissue, and biliary ductal
structures were systematically excluded. Furthermore, any
detectable focal lesions or masses were carefully omitted
to ensure that only representative liver tissue was
incorporated into the quantitative analysis. To verify the
appropriateness and consistency of these ROI placements,
all selected regions were additionally reviewed and
confirmed by a radiologist. The average values of these

ROIs were used to calculate the three evaluation methods.
Fig. 2 shows the locations of ROIs in the liver and spleen.

3. Results and Discussion

When comparing the CACS values between normal-
weight and virtual high-BMI conditions, five patients
exhibited higher CACS values in the simulated high-BMI
condition. The CACS values of normal-weight patients

(b)

Fig. 2. (Color online) Region of interest (ROI) setting for measuring liver fat content: (a) normal-weight patient, and (b) virtual
high-BMI conditions. The four white circles represent the ROI of the liver, and the yellow circle represents the ROI of the spleen.
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Table 2. Coronary artery calcium score (CACS) and risk rank
evaluation values for normal-weight and virtual high-BMI
conditions. Risk rank categories were classified based on
CACS as follows: rank 1: CACS = 0; rank 2: 0 < CACS <
10; rank 3: 10 < CACS =< 100; rank 4: 100 < CACS = 400;
rank 5: 400 < CACS

Patients Weight CACS Risk rank
) Normal 0.00 1
Patient 1 )
High-BMI 0.00 1
. Normal 0.50 2
Patient 2 .
High-BMI 0.50 2
) Normal 0.00 1
Patient 3 )
High-BMI 0.83 2
. Normal 5.90 2
Patient 4 .
High-BMI 10.90 3
) Normal 8.40 2
Patient 5 .
High-BMI 11.56 3
. Normal 9.80 2
Patient 6 .
High-BMI 13.80 3
) Normal 25.10 3
Patient 7 .
High-BMI 32.40 3

ranged from 0.00 to 25.10; however, those of virtual high-
BMI conditions showed values up to 32.40. In particular,
in the case of patient 3, the CACS increased from 0.00 to
0.83, changing the risk rank from 1 to 2. In the case of
patient 4, the CACS also increased from 5.90 to 10.90, in
patient 5, the CACS increased from 8.40 to 11.56, and in
patient 6, the CACS increased from 9.80 to 13.80,
changing the risk rank from 2 to 3. We found that CACS
tended to appear higher when BMI-related noise was
generated in the CT images. The changes in the CACS of
normal-weight patients and virtual high-BMI conditions
are shown in Table 2 and Fig. 3.

To evaluate the relationship between BMI-related noise
and liver fat content based on CT images, three liver fat
content quantification methods—Iliver HU, L/S ratio, and
L/S difference—were evaluated in both normal-weight
and virtual high-BMI conditions (Fig. 4). In most
patients, decreases in all three methods were observed
under the virtual high-BMI condition, which may indicate
a potential influence of the added noise in liver fat
assessment.

The liver HU measurement indicated that six virtual
high-BMI conditions exhibited lower HU values compared
with the normal-weight patients. Patient 1, the only case
with a slightly higher HU value, showed a small rise from
65.64 to 65.79. In all patients except Patient 1, the
attenuation value of liver HU was reduced by an average
of 0.94%, and in Patient 2, the HU value was reduced by
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Fig. 3. Results of coronary artery calcium score measurements
in normal-weight and virtual high-BMI conditions.

a maximum of 1.98% from 70.08 to 68.70.

The L/S ratio values were observed to be lower in all
patients, with an average reduction of 1.74%. In particular,
Patient 3 showed a tendency to decrease from 1.37 to
1.28, with a maximum observed reduction of approxi-
mately 6.69%.

The L/S difference values were measured to be lower in
all patients, with an average reduction of 6.08%.
Specifically, in Patient 3, the L/S difference showed a
notable tendency to decrease from 17.28 to 13.99, and a
maximum reduction observed across all patients was
approximately 19.02%.

This study analyzed the effects of BMI-related noise on
CACS and liver fat quantification in coronary artery CT
images. By adding noise parameters derived from obese
patients to the images of normal-weight patients, we
aimed to assess the influence of noise alone, independent
of anatomical differences. A tendency toward higher
CACS values was noted in most virtual high-BMI
conditions, and several patients exhibited changes in risk
score, suggesting that BMI-related noise may have an
impact on clinical evaluation. In addition, liver attenuation,
L/S ratio, and L/S difference, which are commonly used
methods for CT-based quantification of liver fat content,
were generally measured to be lower under the virtual
high-BMI condition, which may reflect the influence of
increased BMlI-related noise on liver fat assessment.
Among these methods, the L/S difference tended to show
the largest relative reduction, suggesting that it may be
more sensitive to BMI-related noise compared with the
other indices (Fig. 5).

Our studies showed that BMlI-related noise in CT
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Fig. 4. Results of liver fat quantification methods between nor-
mal-weight and virtual high-BMI conditions: (a) liver attenu-
ation values (HU), (b) liver-to-spleen ratio (L/S ratio), and (c)
liver-to-spleen difference (L/S difference).

images generates artificial high-intensity signals similar to
CAC, which can overestimate CACS values. Therefore,
advanced algorithms that separate noise artifacts from
CAC are required. Several previous studies have proposed
deep learning-based noise reduction methods that learn
the statistical distribution of noise using data-driven
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Fig. 5. Change rates (%) of coronary artery calcium score
(CACS), liver attenuation (HU), liver-to-spleen ratio (LSR),
and liver-to-spleen difference (LSD) between normal-weight
and virtual high-BMI conditions.

training. The noise-to-noise training method enables the
model to learn noise characteristics without reference
images, showing promising results for noise reduction in
low-dose CT images [24, 25]. In addition, generative
adversarial networks have been used to model and
suppress noise by learning the complex distribution of
signals and noise through adversarial training and
preserving essential anatomical details [26, 27]. These
approaches highlight the potential of deep learning
models trained on noise statistics and characteristics.
Given that CT noise originates from the quantum
behavior of X-ray photons—a form of electromagnetic
radiation—deep learning models that explicitly learn
photon-statistics—based noise distributions may be
particularly effective for mitigating BMI-related noise
effects. Therefore, future studies could investigate whether
applying such methods to coronary artery CT using
datasets that include both calcified lesions and synthetic
noise patterns can reduce noise-induced biases in CACS
under high-BMI conditions.

Previous studies evaluated liver fat content on abdominal
CT images and investigated the association between liver
steatosis and CAD [28, 29]. Nevertheless, this is the first
study, to our knowledge, to quantitatively analyze the
association between CACS and liver fat content using
coronary artery CT images. Moreover, this study is the
first preliminary investigation to explore this association
and provides a foundation for future clinical validation.

Studies on automatic liver fat analysis using deep
learning have been actively conducted, but the selection
of ROIs in clinical practice is almost always performed
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manually. Many studies demonstrated that the selection of
three ROIs rather than a single ROI is useful for
quantitatively evaluating liver fat content in CT images
[13, 30]. In this study, the liver ROI, which could cause
variability, was manually selected. Therefore, in the
future, we plan to investigate which ROI ranges and sizes
affect liver fat content assessment. Moreover, we aimed to
develop an automatic ROI-localization model using deep
learning trained to identify the most stable ROI position.

As a preliminary study, this research observed the
tendencies of CACS and liver fat content assessment
methods under BMlI-related noise simulation. However, it
has the limitation of analyzing only seven patients, and
the small sample size did not allow for statistical analysis.
Therefore, in future study, we plan to include a larger
cohort with more granular BMI stratification and to
perform formal statistical analyses to enhance the validity
and generalizability of our findings. Furthermore, an
explicit limitation of our study is that anatomical and HU
attenuation changes associated with true obesity were not
modeled. Although our approach enabled noise-focused
analysis, actual obese patients have anatomical variability
that can affect measurements, such as fat distribution
changes, organ displacement, and tissue heterogeneity
[31]. Therefore, further validation using actual obese
patient data is required, and future studies should
categorize patients according to BMI class (e.g., normal,
overweight, and obese) to investigate how anatomical and
noise characteristics jointly affect the CACS and liver fat
quantification. Accordingly, the present findings should
be interpreted as preliminary noise-induced HU attenuation
trends rather than as actual clinical effects of obesity.

This study was performed using CT data from a single
scanner, which limits its generalizability to other scanners
and clinical settings. Previous studies have shown that
liver HU values differ among various scanners because of
differences in reconstruction algorithms and tube currents
[32, 33]. Since electromagnetic wave attenuation and
photon flux vary depending on scanner design and
acquisition parameters, BMI-related noise characteristics
may also differ across systems. Accordingly, there is a
need for methods that can reduce scanner-related vari-
ability, and phantom-based HU normalization approaches
performed under coronary artery CT conditions may be
required to improve the consistency of attenuation
measurements across different systems.

In this study, we used a noise estimation algorithm to
simulate BMI-related noise in coronary artery CT images
and modeled a noise estimation algorithm that separated
the noise components. Using this algorithm, we extracted
BMI-related noise characteristics from the obese patient
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group and applied them to generate synthetic datasets.
Given these approaches, there is a need for approaches
that can reduce BMlI-related noise while preserving
essential anatomical structures. Future study may require
exploring whether deep learning frameworks trained on
datasets that include calcified lesions alongside simulated
BMlI-related noise patterns could help reduce noise-
induced bias in quantitative coronary CT analysis under
varying BMI conditions.

Currently, coronary artery CT scans for CACS
measurements are usually performed using a standardized
clinical protocol, regardless of the patient’s body size, and
BMI is not considered. Therefore, diagnostic errors and
unnecessary treatment plans for patients are a possibility
[34]. Our results support the need for an image-
processing pipeline that accounts for BMI-related noise.
In particular, approaches that incorporate BMI as an
additional imaging factor, potentially including deep
learning-based noise correction strategies, may be needed
to enable more consistent interpretation under patient-
specific image conditions. In addition, exploring whether
quantitative liver fat assessment can be interpreted along
with CACS may provide useful insights for future
cardiovascular risk evaluation. Examining the relationship
between liver fat content and CACS in larger populations
could help clarify their potential complementary value in
risk stratification.

Overall, this study highlights the effects of BMI-related
noise on two clinically important imaging biomarkers.
Our findings suggest that CT-based assessments should
incorporate noise reduction and anatomical normalization
strategies to ensure accurate and personalized assessments.
This approach highlights the importance of incorporating
BMlI-related noise considerations into CT image inter-
pretation and may serve as a useful basis for future
methodological refinements in quantitative imaging.

4. Conclusion

This study demonstrated that noise caused by increased
BMI-related noise can affect CACS and liver fat quanti-
fication in coronary artery CT images. The results showed
that the CACS increased in coronary artery CT images
under virtual high-BMI conditions, and that all liver fat
quantification methods tended to decrease, with the most
pronounced decrease observed in the L/S difference
method. Our analyses suggest that CT image noise
associated with high BMI may lead to overestimation of
the CACS and misclassification of risks in clinical
assessment. Given that CT acquisition uses X-ray electro-
magnetic radiation, increased BMI affects photon attenu-
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ation and contributes to the observed noise-related biases.
These findings highlight the need for noise reduction
techniques or BMI-based corrections in quantitative CT
image analysis.
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