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This study aimed to implement artificial intelligence (AI) techniques using magnetic resonance imaging (MRI)
of metastatic brain tumors for potential application in diagnosis and surgical environments. The experimental
method involved reconstructing MRI data by applying an Al based super resolution (SR) technique to the
ground truth (GT) images obtained using T2 weighted imaging (T2WI), T1 weighted imaging (T1WI), contrast
enhanced TIWI (CE-T1WI), and contrast enhanced fluid attenuated inversion recovery (CE-FLAIR). The
performance of the reconstructed images was evaluated based on peak signal to noise ratio (PSNR), structural
similarity index measure (SSIM), and gamma knife radiosurgery (GKRS) coordinate systems. The results
showed that the PSNR and SSIM values of the SR technique were higher than those achieved with
conventional image post processing methods, and no differences were observed in the radiosurgery coordinates.
Consequently, SR demonstrated superior image quality improvement without altering the coordinate system,
confirming its utility as a viable technique for the diagnosis and surgical treatment of metastatic brain tumors.
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1. Introduction

Metastatic brain tumors are pathological conditions that
arise when cancer cells spread from a primary lesion to
the brain, significantly affecting motor function, cognitive
abilities, and emotional stability, thereby diminishing
patients’ quality of life [1, 2]. Accordingly, treatment
strategies are established based on factors such as tumor
size, location, and the patient’s overall condition, and may
include pharmacological therapy, surgical resection, or
stereotactic radiosurgery (SRS) [3, 4]. In particular,
gamma knife radiosurgery (GKRS) serves as a non-
invasive alternative for patients who are not suitable
candidates for surgery or who exhibit limited response to
medications, delivering highly focused gamma rays to the
lesion with demonstrated therapeutic efficacy [5, 6].
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The success of GKRS critically depends on the
establishment of a precise treatment plan based on high-
resolution imaging, in which magnetic resonance imaging
(MRI) plays a central role by providing accurate three-
dimensional spatial information about the lesion [6-8].
Various MRI techniques such as T1 weighted imaging
(TIWI), T2 weighted imaging (T2WI), time of flight
(TOF), and diffusion weighted imaging (DWI) offer
visual representations of the radiological characteristics of
lesions, and the utility of post-processing methods to
enhance image quality has also been reported [9-12].
However, acquiring high-resolution MRI requires pro-
longed scan times, which increases the risk of motion
artifacts. Furthermore, if post-processing techniques
distort the structural integrity of the original image
(ground truth), diagnostic and therapeutic accuracy may
be compromised.

To overcome these limitations, super resolution (SR)
techniques have gained attention [13-15]. SR is an image
reconstruction method based on artificial intelligence (Al)
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that learns patterns and fine details from low-resolution
images to generate high-resolution counterparts, with
strong performance in preserving the texture characteristics
of the original images without distortion [16-19]. Given
that metastatic brain tumors exhibit distinct texture
characteristics compared to normal tissue, SR techniques
can facilitate more precise visualization of lesions and
surrounding structures, thereby contributing to improved
diagnostic accuracy and radiation treatment planning.

This study aims to apply a deep learning based SR
technique to MRI of metastatic brain tumors, evaluate the
degree of image quality enhancement, and analyze the
impact of the reconstructed images on GKRS coordinate
system configuration. Through this investigation, we seek
to explore the clinical applicability of SR technology and
provide evidence for its potential to improve the precision
of GKRS in future clinical practice.

2. Materials and Methods

2.1. Image data
The data used in this study consist of MRI scans from
30 patients (15 males and 15 females) who were
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diagnosed with metastatic brain tumors and underwent
GKRS at our institution between December 2020 and
October 2024.

Fig. 1 presents representative MRI data of a brain
tumor obtained for GKRS. The MRI examination for
GKRS was conducted using a non-frame-based approach.
Images were acquired using a Philips Intra Achieva 3.0
Tesla MRI equipped with a SENSE NEURO_VASC
multi-channel head coil, and included T2WI, T1WI,
contrast enhanced T1WI (CE-T1WI), and contrast enhanced
fluid attenuated inversion recovery (CE-FLAIR). All
imaging data were retrospectively collected following
prior approval from the institutional review board (IRB
approval number: 2022-06-035).

Table 1 summarizes the composition of the dataset and
the MRI acquisition parameters used. The entire dataset
consists of 830 images with 16 bits, including 180 images
of T2WI, 180 images of T1WI, 233 images of CE-T1WI,
and 237 images of CE-FLAIR. To ensure consistency in
image quality, identical imaging parameters were applied
across all acquisitions.

2.2. Super resolution algorithm

(d)

Fig. 1. (Color online) (a)~(d) represent MRI data of metastatic brain tumors and the red arrows indicate the locations of the met-
astatic lesions. (a) shows T2WI, (b) shows T1WI, (c) shows CE-T1WI, and (d) shows CE-FLAIR.
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Table 1. Examination parameters.
MRI Slice thickness ~ Acquisition Recovery time Echo time Number of Flip angle
Pulse Sequence . .
methods (mm) matrix (msec) (msec) excitations (0)
T2WI 2D turbo spin echo 2500 110 1 -
TIwl 3D turbo field ech 5 2.5 ! 8
CE-TIWI rbo field echo 1 256 x 256 . 2
CE-FLAIR Version recovery turbo 10000 120 1 90
spin echo

-
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Fig. 2. (Color online) A schematic diagram of the algorithm for SR of the MRI dataset. It illustrates the process where the input
image passes through convolutional and residual layers to be reconstructed, and the reconstructed MRI data are output by com-

bining the residual image with the processed input.

The algorithm used to implement SR was the very deep
super resolution (VDSR) algorithm. Fig. 2 shows the
schematic of the VDSR algorithm, which implements SR
based on low-resolution images, high-resolution images,
and residual images.

The algorithm for implementing SR utilizes the VDSR
algorithm. Let the dataset be N, the low resolution images
be A, and the high-resolution images be B. The dataset
can then be expressed as Equation (1):

(4%, By, (1)

The SR algorithm aims to reconstruct high-resolution
images using training data. The algorithm predicts results
through learning, where the network’s prediction is
denoted as f, and the reconstructed high resolution image
is B. This relationship is defined by Equation (2):

B =f(X) (2)

The VDSR algorithm defines the residual image R
based on the observation that most components of the
input and output data are similar. R is defined by
Equation (3):

R=B-X 3)

The loss function, L, which measures the difference
between the residual image and the network prediction, L
is given by Equation (4):

L= 3R /O @

Table 2 outlines the configuration of the environment
used for implementing the SR algorithm. The VDSR
algorithm was implemented using MATLAB 2023a
(MathWorks, USA) with the Parallel Computing Toolbox,
Image Processing Toolbox, and Deep Learning Toolbox.
The specifications of the computational setup are as
follows: Operating System: Windows 11 Education.
central processing unit (CPU): Intel Core i9—12900KF.
graphics processing unit (GPU): GeForce RTX 3080.

Table 2. Computer setting.

System environments Computer specifications
MATLAB 2023a

Parallel computing toolbox

Computer language
Dataset processing and computation

Deep learning implementation Deep learning tool box

Image processing Image processing toolbox
Operating system Windows 11 education
Central processing unit Intel core 19 — 12900KF

Graphic processing unit GeForce RTX 3080
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2.3. Dataset pre processing

The MRI data of metastatic brain tumors were
transmitted to the picture archiving and communication
system (PACS) and downloaded in the digital imaging
and communications in medicine (DICOM) format with
no compression. Subsequently, the DICOM data were
converted into the joint photographic experts group
(JPEG) format with 8 bit processing, and the input
resolution was normalized to 256 x 256.

2.4. Setting up the training dataset

First, the GT images were converted into the YCbCr
color space, consisting of luminance (Y channel) and
chrominance (Cb and Cr channels). To create low
resolution sample images, the size of the Y channel was
reduced and then resized back to the original dimensions
using bicubic interpolation. The training dataset was
defined as pairs of up-sampled images and their
corresponding residual images. The up-sampled images
and their computed residual images were saved in a pre-
defined directory for training purposes.

2.5. Training options

Table 3 outlines the training options used for the
algorithm. To optimize SR performance for clinical
imaging, various training configurations were empirically
tested, and the condition that demonstrated the best
performance was adopted in this study. The optimizer
used was stochastic gradient descent with momentum
(SGDM), which has proven effective for assessing the
generalized performance of learning models and enables
stable training. Incorporating momentum helps regulate
the degree of gradient descent during training and
mitigates issues related to local minima. A momentum
value of 0.9 was employed, as it is commonly accepted as
a stable and empirically validated parameter, and yielded

Table 3. Option setting.

Options Parameters Setting value
.. Stochastic gradient descent
Optimizer .
with momentum
Momentum 0.9
o Initial learning rate 0.1
Trallnmg Learning rate factor 0.1
options .
L2 regularization 0.0001
Gradient Threshold 0.01
Gradient threshold method ~ Learn rate drop factor
Learn rate drop factor 10
Mini batch Max epoch 100
options Mini batch size 32

Usefulness Evaluation of Deep Learning Super Resolution Technique in Clinical Application--- — Jun-Ho Hwang et al.

stable training results in this study as well. Regarding the
initial learning rate, it was found that excessively low
values significantly slowed the training process. In
preliminary experiments, a learning rate of 0.01 resulted
in overly slow convergence. Therefore, the initial learning
rate was set to 0.1, with a scheduled decrease over time as
training progressed. The L2 regularization factor was
included to prevent model overfitting. An initial search
was conducted within the range of 0.0001 to 0.0005, and
the final value was set to 0.0001. Additionally, to prevent
premature convergence and potential overfitting, the
number of training epochs was set to 100. The mini batch
size was empirically set to 32, a commonly used value for
evaluating generalized model performance. Finally, the
training loss rate was visualized as a curve to assess
model performance throughout the learning process.

2.6. Implementation of super resolution algorithm

The algorithm layers for implementing SR on MRI data
were configured. The structure consisted of an input layer,
a convolution layer, a rectified linear unit (ReLU) layer,
and an output layer, which were combined to construct
the VDSR model. For SR implementation based on the
VDSR algorithm, low resolution images generated through
sampling were resized to the GT dimensions and con-
verted to the YCbCr color space. Bicubic interpolation
was applied to each channel. Subsequently, the Y channel
was isolated and input into the VDSR model to generate
the residual image. The high resolution Y component was
obtained by combining the output residual image with the
Y channel. Finally, the high resolution Y component was
merged with the remaining chrominance channels to
produce the SR based high resolution MRI data.

2.7. Image quality and coordinate evaluation

The performance of the SR method was evaluated using
the peak signal to noise ratio (PSNR) and structural
similarity index measure (SSIM). To assess statistical
significance, a paired t-test was conducted using MATLAB,
and a p-value of less than 0.05 was considered statisti-
cally significant. The coordinate system for GKRS was
evaluated based on the 4 mm shot of the tissue maximum
ratio (TMR) 10 dose algorithm in Leksell Gamma Plan
11.4.2 (Elekta, Sweden) when applied to metastatic brain
tumors.

3. Results

3.1. Training options
The VDSR algorithm was trained over a total of 100
epochs, and the training loss curve is presented in Fig. 3.
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HaFTOAQ R  Progess:
Status Training stopped
Stop reason:  Max epochs compieted
Time
Start time: 20250708 114225
Eiapsed time: 013157

Information
Epoch 100 of 100
02 teraton 61600
Leaming rate schedule  Piecewise
1810

Last teration

Single GPU

Training Loss

0 1 2 3 a 5 6 7
Iteration 10*

Fig. 3. (Color online) Graph representing the loss rate of the VDSR algorithm. The curve demonstrates a rapid initial decrease in
loss, followed by a gradual plateau, indicating convergence stability.

Table 4. VDSR algorithm.

The loss rapidly decreased during the initial phase of

.. Algorithm Layer settin;
training and then showed stable convergence. £ Y £
Input layer 41 x 41 x 1 (Y channel)
3.2. Implementation of super resolution algorithm Convolution layer 3% 3 ﬁlfer op erat.lon
Table 4 outlines the layer composition of the VDSR ReLU layer Activation function
Output layer Replacement of regression layer

algorithm. In the input layer, the patch size of the input

Fig. 4. (Color online) (a)(e) illustrate the SR process for generating high resolution images using the GT, low resolution images,
and residual images of CE-FLAIR. (a) represents the GT, (b) shows the low resolution image, (c) depicts the residual image, (d)
displays the SR based high resolution image, and (e) provides a magnified comparison of the metastatic brain tumor between (b)
(left: low-resolution) and (d) (right: SR-based high-resolution). The red arrows indicated in the figure mean the location of the met-
astatic brain tumor, and the red box is an enlarged area of (e).
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Table 5. Image quality evaluation.
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*PSNR (db) *SSIM
Dataset Scale factor — - ; . - -
Bicubic interpolation Super resolution Bicubic interpolation Super resolution
x2 30.4 32.6 0.93 0.95
MRI data x3 27.7 304 0.88 0.90
x4 26.6 28.4 0.85 0.88
"p<0.05

data was set to 41 x 41 to enable the 20 layers of the
VDSR algorithm to perform patch based computations.
Due to the algorithm’s use of luminance components, the
Y component was specifically designated, resulting in a
final input layer size of 41 x 41 x 1 channels. In the
convolution layer, the learning process employed 3 x 3
filters configured into 64 units, with each operation
activated in the ReLU layer. The output layer was
replaced with a regression layer to estimate the error
between the residual image and the network prediction.

The MRI data were converted into YCbCr channels, as
shown in Fig. 4. Among these, the Y channel of the data
was passed to the network to generate the residual image.
Finally, the high-resolution Y channel was combined with
the remaining color channels to produce the MRI data
with SR applied.

3.3. Image quality and coordinate evaluation

Table 5 presents the results of PSNR and SSIM
evaluations. Image quality was highest when the scale
factor was 2, as the PSNR and SSIM of the MRI data
reached their peak values, showing statistically significant
differences. Furthermore, although SSIM varied depending
on the scale factor, the radiosurgery coordinates of the
MRI data reconstructed using the SR algorithm showed
no changes compared to the GT.

4. Discussions

The American Association of Physicists in Medicine
(AAPM) has proposed guidelines for maintaining stable
image quality [20-22]. The core of these guidelines
emphasizes quality assurance (QA) of imaging equipment
and the application of appropriate imaging parameters,
specifying the need to effectively manage factors that
degrade image resolution [21]. Even when QA and proper
imaging conditions are implemented, random resolution
degradation within images can be addressed and improved
through post-processing techniques [9-11]. However,
post-processing techniques often lead to loss of original
data, resulting in image distortion. In many cases, the
benefits obtained from applying post-processing techniques

are outweighed by the disadvantages caused by distortion
[12, 23]. Consequently, there is a limitation in the
increasing loss rate of image information. This suggests
that conventional methods may not be the optimal
approach to managing image quality, highlighting the
need for new methods that can maintain image quality
while minimizing data distortion. This study aims to
address these issues by applying SR techniques to
simultaneously achieve stable improvements in image
quality and minimize data loss. Furthermore, it evaluates
how these methods can be utilized in clinical environ-
ments where image guidance is essential.

It was first necessary to select an Al algorithm suitable
for the research objective. Al algorithms learn and
compute complex patterns from input data, and their
pattern processing speed and utilization of computational
resources vary depending on the type of algorithm [23-
25]. In this context, denoising techniques can be considered
as one category of Al-based methods for enhancing
image resolution due to their shared objective of improv-
ing image quality. Denoising focuses on removing noise
from images and has demonstrated strong performance in
enhancing image clarity. While it involves preservation
and partial restoration of texture components, texture
recovery remains a secondary objective in denoising. In
contrast, SR techniques are designed to reconstruct fine
texture details lost due to low resolution, while also
performing noise reduction as a secondary effect. Since
the primary aim of this study was to enhance spatial
resolution and restore fine textures rather than simply
reduce noise, a SR algorithm was employed in the
experiments.

Representative SR algorithms designed to enhance
image resolution include super resolution convolutional
neural network (SRCNN), VDSR, and enhanced deep
super resolution (EDSR) [24-26]. SRCNN is one of the
earliest convolutional neural network (CNN) based SR
algorithms, characterized by a relatively simple architec-
ture. However, due to its shallow depth, its learning
capacity is limited, and its performance in improving
image quality is relatively constrained. Moreover, the
inherently low learning rate of SRCNN reduces its
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efficiency in practical applications [24]. VDSR, on the
other hand, consists of 20 deep convolutional layers,
enabling superior performance in image quality enhan-
cement compared to earlier models. It also allows for
higher learning rates, facilitating faster and more effective
training [24, 25]. EDSR, which was proposed after
VDSR, adopts a deeper residual learning-based architec-
ture and demonstrates improved reconstruction of high-
frequency image details. By eliminating batch normali-
zation layers, EDSR further enhances both training
stability and overall performance [26]. However, EDSR
requires greater computational resources and memory,
and it necessitates separate training for each upscaling
factor, which poses limitations for deployment in clinical
environments with restricted computational capacity.
Considering these factors, this study adopted VDSR as
the SR algorithm for image quality enhancement, based
on its structural simplicity, clinical applicability, and
training stability.

The VDSR algorithm used in this study was trained
over a total of 100 epochs. The training loss decreased
sharply during the initial epochs and gradually converged
in a stable manner after approximately 30 epochs. This
convergence trend indicates that the model achieved
sufficiently stable learning with respect to the training
data. In other words, such convergence behavior supports
the model’s training stability and reproducibility of
performance. The VDSR based SR algorithm imple-
mented in this study utilized high resolution MRI datas
that were first converted into the YCbCr color space, and
only the Y channel-representing luminance information-
was extracted and used for training. VDSR inherently
performs SR on the Y channel after converting input
images into the YCbCr space. Since the human visual
system is significantly more sensitive to luminance than
chrominance, applying SR to the Y channel has the
greatest impact on perceived image quality. During
training, the extracted Y channel was divided into 41 x 41
pixels patches to serve as inputs. This patch based
approach enables the model to focus on reconstructing
localized structures and is a standard implementation
method for VDSR, balancing memory efficiency and
training stability. Accordingly, in this study, special
attention was given to verifying whether MRI data were
correctly converted to the YCbCr color space and
whether the Y channel was accurately processed by the
algorithm without data loss. It was confirmed that both
the up-sampled MRI data and residual learning outputs
were successfully generated and saved to their designated
directories, indicating that the metastatic brain tumor MRI
data were correctly transformed into YCbCr format and
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that VDSR-based residual learning was properly imple-
mented. Experimental results using the test dataset
showed that the algorithm successfully generated residual
images and reconstructed the super-resolved output
effectively. Although the residual learning structure
inherently produced some degree of noise suppression
during the high-resolution detail reconstruction, this was
considered a secondary effect. Notably, this study did not
employ a stitching method to reassemble patch based
outputs. To minimize the risk of aliasing artifacts that can
arise during patch sampling and reconstruction, low
resolution images were directly generated from high-
resolution ground truth MRI data [27]. Furthermore, since
the original images were acquired using a 3.0T MRI
system under uniform imaging parameters, any potential
aliasing effects were deemed negligible and not influential
on the experimental results.

The resulting PSNR and SSIM provided significant
insights for the study. First, compared to image post-
processing techniques, the VDSR algorithm showed
higher PSNR values across all scale factors, demonstrating
superior image quality improvement, which was also
statistically significant. One of the common issues with
deep neural networks is the reduction in the size of
feature maps as they pass through convolutional layers,
leading to the loss of pixel information containing
meaningful data. However, this algorithm applied padding
to preserve pixel information [24, 25]. The consistently
high PSNR values across all scale factors reflect this
feature of the algorithm. A similar trend was observed in
SSIM.

A previous study using MRI data from patients with
trigeminal neuralgia demonstrated meaningful SR out-
comes based on 2D fast spin echo sequences. In contrast,
the present study utilized 3D turbo field echo sequences
and focused on solid metastatic brain tumors-lesions that
are commonly encountered in actual clinical practice.
Accordingly, differences exist in both the imaging
sequence and the target pathology. Unlike cranial nerve
structures, metastatic brain tumors exhibit diverse morpho-
logies and poorly defined boundaries, with tissue
characteristics that are fundamentally different. Therefore,
it is reasonable to expect that SR results in this context
may differ from those obtained in studies targeting neural
structures. Within this framework, the high SSIM values
achieved by the VDSR algorithm in this study suggest
that it effectively preserved and reconstructed the intrinsic
texture features of metastatic brain tumors during the
image reconstruction process. The high SSIM values
recorded by the VDSR algorithm suggest that it effec-
tively reconstructed and restored the unique texture
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components of metastatic brain tumors during the image
reconstruction process. Notably, despite variations in
SSIM across scale factors, there were no differences in
the radiosurgery system coordinates, indicating that
GKRS targeting was unaffected. In summary, this study
achieved the following key outcomes: (1) SR techniques
applied to MRI data provided consistent results even with
test data outside the training dataset; (2) SR was
successfully implemented for MRI data of metastatic
brain tumors, significantly improving PSNR; (3) the
VDSR algorithm effectively reconstructed and restored
the texture components of metastatic brain tumors; and
(4) despite SSIM not reaching 1, the consistency of
radiosurgery coordinates between GT and reconstructed
images confirms the feasibility of GKRS targeting. These
findings highlight the success and clinical applicability of
this study.

However, this study has certain limitations in terms of
MRI data handling and computational resources. First,
due to practical constraints related to computational
capacity and storage, the original DICOM images were
converted to 8-bit JPEG format for analysis. This
conversion reduces the dynamic range of the images,
which may affect the preservation of subtle anatomical
details, such as tumor boundaries, and could limit the
diagnostic utility of the reconstructed images to some
extent [27-30]. In future studies, it would be beneficial to
construct a training environment based on raw DICOM
data and to incorporate preprocessing steps such as
intensity normalization and window level adjustment.
These enhancements are expected to further improve the
clinical applicability of SR techniques.

Second, because the clinical data used in this study
were retrospectively collected under IRB approval, the
absolute number of metastatic brain tumor MRI cases was
limited. This limitation may affect the generalizability of
the SR algorithm’s performance and raises the potential
risk of overfitting [27-29]. Future studies should incorpo-
rate a broader range of imaging modalities and larger,
more diverse datasets to validate and enhance the
robustness of the proposed approach.

Third, due to limitations in available computational
resources, this study employed the VDSR algorithm
rather than more recent or advanced SR methods. Although
VDSR offers a balance between performance and com-
putational efficiency, recently proposed high performance
SR models have shown considerable promise in further
improving image quality. Therefore, if sufficient com-
putational power and time become available in the future,
it would be worthwhile to explore and apply these state-
of-the-art algorithms. It should be noted, however, that
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introducing new algorithmic architectures or mathe-
matical models that have not been pre-trained may lead to
issues such as overfitting or slower convergence during
training. Nevertheless, with adequate time and computa-
tional capacity, these approaches could be progressively
investigated in future work.

And then, although the reconstructed images from the
SR algorithm showed SSIM values exceeding 0.88 when
compared to the GT, the differences introduced during the
reconstruction process were not clearly explained [31,
32]. The VDSR algorithm used in this study is a regression
based neural network architecture designed to reconstruct
high resolution images from single low resolution inputs.
Internally, it operates by repeatedly applying 3 x 3
convolutional layers and ReLU activation functions to
minimize pixel wise differences between the input and
target images. Unlike classification or object detection
tasks, VDSR does not involve explicit attention maps or
decision boundaries, which poses inherent limitations for
the direct application of explainable Al techniques. As a
result, in the context of radio surgical planning, recon-
structed images should be used as auxiliary information,
and the interpretation of data transformations during the
reconstruction process must be supported by both Al-
based analytical methods and clinical expertise [32-34].
Furthermore, additional experiments applying various
gamma knife treatment plans are warranted to enhance
the reliability and clinical relevance of the study’s findings.

5. Conclusions

Despite these limitations, this study holds significant
value in effectively improving the image quality of MRI
data and quantitatively analyzing its potential application
in the GKRS environment. These findings can serve as
foundational data for the future clinical adoption of Al-
based image reconstruction techniques in image-guided
surgical environments.
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