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This study aimed to implement artificial intelligence (AI) techniques using magnetic resonance imaging (MRI)

of metastatic brain tumors for potential application in diagnosis and surgical environments. The experimental

method involved reconstructing MRI data by applying an AI based super resolution (SR) technique to the

ground truth (GT) images obtained using T2 weighted imaging (T2WI), T1 weighted imaging (T1WI), contrast

enhanced T1WI (CE-T1WI), and contrast enhanced fluid attenuated inversion recovery (CE-FLAIR). The

performance of the reconstructed images was evaluated based on peak signal to noise ratio (PSNR), structural

similarity index measure (SSIM), and gamma knife radiosurgery (GKRS) coordinate systems. The results

showed that the PSNR and SSIM values of the SR technique were higher than those achieved with

conventional image post processing methods, and no differences were observed in the radiosurgery coordinates.

Consequently, SR demonstrated superior image quality improvement without altering the coordinate system,

confirming its utility as a viable technique for the diagnosis and surgical treatment of metastatic brain tumors.

Keywords : metastatic brain tumor, artificial intelligence (AI), deep learning, super resolution (SR), magnetic reso-

nance imaging (MRI)

1. Introduction

Metastatic brain tumors are pathological conditions that

arise when cancer cells spread from a primary lesion to

the brain, significantly affecting motor function, cognitive

abilities, and emotional stability, thereby diminishing

patients’ quality of life [1, 2]. Accordingly, treatment

strategies are established based on factors such as tumor

size, location, and the patient’s overall condition, and may

include pharmacological therapy, surgical resection, or

stereotactic radiosurgery (SRS) [3, 4]. In particular,

gamma knife radiosurgery (GKRS) serves as a non-

invasive alternative for patients who are not suitable

candidates for surgery or who exhibit limited response to

medications, delivering highly focused gamma rays to the

lesion with demonstrated therapeutic efficacy [5, 6].

The success of GKRS critically depends on the

establishment of a precise treatment plan based on high-

resolution imaging, in which magnetic resonance imaging

(MRI) plays a central role by providing accurate three-

dimensional spatial information about the lesion [6-8].

Various MRI techniques such as T1 weighted imaging

(T1WI), T2 weighted imaging (T2WI), time of flight

(TOF), and diffusion weighted imaging (DWI) offer

visual representations of the radiological characteristics of

lesions, and the utility of post-processing methods to

enhance image quality has also been reported [9-12].

However, acquiring high-resolution MRI requires pro-

longed scan times, which increases the risk of motion

artifacts. Furthermore, if post-processing techniques

distort the structural integrity of the original image

(ground truth), diagnostic and therapeutic accuracy may

be compromised.

To overcome these limitations, super resolution (SR)

techniques have gained attention [13-15]. SR is an image

reconstruction method based on artificial intelligence (AI)
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that learns patterns and fine details from low-resolution

images to generate high-resolution counterparts, with

strong performance in preserving the texture characteristics

of the original images without distortion [16-19]. Given

that metastatic brain tumors exhibit distinct texture

characteristics compared to normal tissue, SR techniques

can facilitate more precise visualization of lesions and

surrounding structures, thereby contributing to improved

diagnostic accuracy and radiation treatment planning.

This study aims to apply a deep learning based SR

technique to MRI of metastatic brain tumors, evaluate the

degree of image quality enhancement, and analyze the

impact of the reconstructed images on GKRS coordinate

system configuration. Through this investigation, we seek

to explore the clinical applicability of SR technology and

provide evidence for its potential to improve the precision

of GKRS in future clinical practice.

2. Materials and Methods

2.1. Image data

The data used in this study consist of MRI scans from

30 patients (15 males and 15 females) who were

diagnosed with metastatic brain tumors and underwent

GKRS at our institution between December 2020 and

October 2024. 

Fig. 1 presents representative MRI data of a brain

tumor obtained for GKRS. The MRI examination for

GKRS was conducted using a non-frame-based approach.

Images were acquired using a Philips Intra Achieva 3.0

Tesla MRI equipped with a SENSE_NEURO_VASC

multi-channel head coil, and included T2WI, T1WI,

contrast enhanced T1WI (CE-T1WI), and contrast enhanced

fluid attenuated inversion recovery (CE-FLAIR). All

imaging data were retrospectively collected following

prior approval from the institutional review board (IRB

approval number: 2022-06-035).

Table 1 summarizes the composition of the dataset and

the MRI acquisition parameters used. The entire dataset

consists of 830 images with 16 bits, including 180 images

of T2WI, 180 images of T1WI, 233 images of CE-T1WI,

and 237 images of CE-FLAIR. To ensure consistency in

image quality, identical imaging parameters were applied

across all acquisitions.

2.2. Super resolution algorithm

Fig. 1. (Color online) (a)–(d) represent MRI data of metastatic brain tumors and the red arrows indicate the locations of the met-

astatic lesions. (a) shows T2WI, (b) shows T1WI, (c) shows CE-T1WI, and (d) shows CE-FLAIR.
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The algorithm used to implement SR was the very deep

super resolution (VDSR) algorithm. Fig. 2 shows the

schematic of the VDSR algorithm, which implements SR

based on low-resolution images, high-resolution images,

and residual images.

The algorithm for implementing SR utilizes the VDSR

algorithm. Let the dataset be N, the low resolution images

be A, and the high-resolution images be B. The dataset

can then be expressed as Equation (1):

 (1)

The SR algorithm aims to reconstruct high-resolution

images using training data. The algorithm predicts results

through learning, where the network’s prediction is

denoted as f, and the reconstructed high resolution image

is . This relationship is defined by Equation (2):

 = f(X) (2)

The VDSR algorithm defines the residual image R

based on the observation that most components of the

input and output data are similar. R is defined by

Equation (3):

R = B – X (3)

The loss function, L, which measures the difference

between the residual image and the network prediction, L

is given by Equation (4):

L = |R  f (X)|2  (4)

Table 2 outlines the configuration of the environment

used for implementing the SR algorithm. The VDSR

algorithm was implemented using MATLAB 2023a

(MathWorks, USA) with the Parallel Computing Toolbox,

Image Processing Toolbox, and Deep Learning Toolbox.

The specifications of the computational setup are as

follows: Operating System: Windows 11 Education.

central processing unit (CPU): Intel Core i9–12900KF.

graphics processing unit (GPU): GeForce RTX 3080.

A
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Fig. 2. (Color online) A schematic diagram of the algorithm for SR of the MRI dataset. It illustrates the process where the input

image passes through convolutional and residual layers to be reconstructed, and the reconstructed MRI data are output by com-

bining the residual image with the processed input.

Table 1. Examination parameters.

MRI 

methods
Pulse Sequence

Slice thickness

(mm)

Acquisition 

matrix

Recovery time

(msec)

Echo time

(msec)

Number of 

excitations

Flip angle

(o)

T2WI 2D turbo spin echo 

1 256 × 256

2500 110 1 -

T1WI
3D turbo field echo 5 2.5

1
8

CE-T1WI 2

CE-FLAIR
Inversion recovery turbo 

spin echo
10000 120 1 90

Table 2. Computer setting.

System environments Computer specifications

Computer language MATLAB 2023a

Dataset processing and computation Parallel computing toolbox

Deep learning implementation Deep learning tool box

Image processing Image processing toolbox

Operating system Windows 11 education

Central processing unit Intel core i9 – 12900KF

Graphic processing unit GeForce RTX 3080



 622  Usefulness Evaluation of Deep Learning Super Resolution Technique in Clinical Application
…

 Jun-Ho Hwang et al.

2.3. Dataset pre processing

The MRI data of metastatic brain tumors were

transmitted to the picture archiving and communication

system (PACS) and downloaded in the digital imaging

and communications in medicine (DICOM) format with

no compression. Subsequently, the DICOM data were

converted into the joint photographic experts group

(JPEG) format with 8 bit processing, and the input

resolution was normalized to 256 × 256.

2.4. Setting up the training dataset

First, the GT images were converted into the YCbCr

color space, consisting of luminance (Y channel) and

chrominance (Cb and Cr channels). To create low

resolution sample images, the size of the Y channel was

reduced and then resized back to the original dimensions

using bicubic interpolation. The training dataset was

defined as pairs of up-sampled images and their

corresponding residual images. The up-sampled images

and their computed residual images were saved in a pre-

defined directory for training purposes.

2.5. Training options

Table 3 outlines the training options used for the

algorithm. To optimize SR performance for clinical

imaging, various training configurations were empirically

tested, and the condition that demonstrated the best

performance was adopted in this study. The optimizer

used was stochastic gradient descent with momentum

(SGDM), which has proven effective for assessing the

generalized performance of learning models and enables

stable training. Incorporating momentum helps regulate

the degree of gradient descent during training and

mitigates issues related to local minima. A momentum

value of 0.9 was employed, as it is commonly accepted as

a stable and empirically validated parameter, and yielded

stable training results in this study as well. Regarding the

initial learning rate, it was found that excessively low

values significantly slowed the training process. In

preliminary experiments, a learning rate of 0.01 resulted

in overly slow convergence. Therefore, the initial learning

rate was set to 0.1, with a scheduled decrease over time as

training progressed. The L2 regularization factor was

included to prevent model overfitting. An initial search

was conducted within the range of 0.0001 to 0.0005, and

the final value was set to 0.0001. Additionally, to prevent

premature convergence and potential overfitting, the

number of training epochs was set to 100. The mini batch

size was empirically set to 32, a commonly used value for

evaluating generalized model performance. Finally, the

training loss rate was visualized as a curve to assess

model performance throughout the learning process.

2.6. Implementation of super resolution algorithm

The algorithm layers for implementing SR on MRI data

were configured. The structure consisted of an input layer,

a convolution layer, a rectified linear unit (ReLU) layer,

and an output layer, which were combined to construct

the VDSR model. For SR implementation based on the

VDSR algorithm, low resolution images generated through

sampling were resized to the GT dimensions and con-

verted to the YCbCr color space. Bicubic interpolation

was applied to each channel. Subsequently, the Y channel

was isolated and input into the VDSR model to generate

the residual image. The high resolution Y component was

obtained by combining the output residual image with the

Y channel. Finally, the high resolution Y component was

merged with the remaining chrominance channels to

produce the SR based high resolution MRI data.

2.7. Image quality and coordinate evaluation

The performance of the SR method was evaluated using

the peak signal to noise ratio (PSNR) and structural

similarity index measure (SSIM). To assess statistical

significance, a paired t-test was conducted using MATLAB,

and a p-value of less than 0.05 was considered statisti-

cally significant. The coordinate system for GKRS was

evaluated based on the 4 mm shot of the tissue maximum

ratio (TMR) 10 dose algorithm in Leksell Gamma Plan

11.4.2 (Elekta, Sweden) when applied to metastatic brain

tumors.

3. Results

3.1. Training options

The VDSR algorithm was trained over a total of 100

epochs, and the training loss curve is presented in Fig. 3.

Table 3. Option setting.

Options Parameters Setting value

Training 

options

Optimizer
Stochastic gradient descent 

with momentum

Momentum 0.9

Initial learning rate 0.1

Learning rate factor 0.1

L2 regularization 0.0001

Gradient Threshold 0.01

Gradient threshold method Learn rate drop factor

Learn rate drop factor 10

Mini batch 

options

Max epoch 100

Mini batch size 32
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The loss rapidly decreased during the initial phase of

training and then showed stable convergence.

3.2. Implementation of super resolution algorithm

Table 4 outlines the layer composition of the VDSR

algorithm. In the input layer, the patch size of the input

Fig. 3. (Color online) Graph representing the loss rate of the VDSR algorithm. The curve demonstrates a rapid initial decrease in

loss, followed by a gradual plateau, indicating convergence stability.

Table 4. VDSR algorithm.

Algorithm Layer setting

Input layer 41 × 41 × 1 (Y channel)

Convolution layer 3 × 3 filter operation

ReLU layer Activation function

Output layer Replacement of regression layer

Fig. 4. (Color online) (a)–(e) illustrate the SR process for generating high resolution images using the GT, low resolution images,

and residual images of CE-FLAIR. (a) represents the GT, (b) shows the low resolution image, (c) depicts the residual image, (d)

displays the SR based high resolution image, and (e) provides a magnified comparison of the metastatic brain tumor between (b)

(left: low-resolution) and (d) (right: SR-based high-resolution). The red arrows indicated in the figure mean the location of the met-

astatic brain tumor, and the red box is an enlarged area of   (e).
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data was set to 41 × 41 to enable the 20 layers of the

VDSR algorithm to perform patch based computations.

Due to the algorithm’s use of luminance components, the

Y component was specifically designated, resulting in a

final input layer size of 41 × 41 × 1 channels. In the

convolution layer, the learning process employed 3 × 3

filters configured into 64 units, with each operation

activated in the ReLU layer. The output layer was

replaced with a regression layer to estimate the error

between the residual image and the network prediction.

The MRI data were converted into YCbCr channels, as

shown in Fig. 4. Among these, the Y channel of the data

was passed to the network to generate the residual image.

Finally, the high-resolution Y channel was combined with

the remaining color channels to produce the MRI data

with SR applied.

3.3. Image quality and coordinate evaluation

Table 5 presents the results of PSNR and SSIM

evaluations. Image quality was highest when the scale

factor was 2, as the PSNR and SSIM of the MRI data

reached their peak values, showing statistically significant

differences. Furthermore, although SSIM varied depending

on the scale factor, the radiosurgery coordinates of the

MRI data reconstructed using the SR algorithm showed

no changes compared to the GT.

4. Discussions

The American Association of Physicists in Medicine

(AAPM) has proposed guidelines for maintaining stable

image quality [20-22]. The core of these guidelines

emphasizes quality assurance (QA) of imaging equipment

and the application of appropriate imaging parameters,

specifying the need to effectively manage factors that

degrade image resolution [21]. Even when QA and proper

imaging conditions are implemented, random resolution

degradation within images can be addressed and improved

through post-processing techniques [9-11]. However,

post-processing techniques often lead to loss of original

data, resulting in image distortion. In many cases, the

benefits obtained from applying post-processing techniques

are outweighed by the disadvantages caused by distortion

[12, 23]. Consequently, there is a limitation in the

increasing loss rate of image information. This suggests

that conventional methods may not be the optimal

approach to managing image quality, highlighting the

need for new methods that can maintain image quality

while minimizing data distortion. This study aims to

address these issues by applying SR techniques to

simultaneously achieve stable improvements in image

quality and minimize data loss. Furthermore, it evaluates

how these methods can be utilized in clinical environ-

ments where image guidance is essential.

It was first necessary to select an AI algorithm suitable

for the research objective. AI algorithms learn and

compute complex patterns from input data, and their

pattern processing speed and utilization of computational

resources vary depending on the type of algorithm [23-

25]. In this context, denoising techniques can be considered

as one category of AI-based methods for enhancing

image resolution due to their shared objective of improv-

ing image quality. Denoising focuses on removing noise

from images and has demonstrated strong performance in

enhancing image clarity. While it involves preservation

and partial restoration of texture components, texture

recovery remains a secondary objective in denoising. In

contrast, SR techniques are designed to reconstruct fine

texture details lost due to low resolution, while also

performing noise reduction as a secondary effect. Since

the primary aim of this study was to enhance spatial

resolution and restore fine textures rather than simply

reduce noise, a SR algorithm was employed in the

experiments.

Representative SR algorithms designed to enhance

image resolution include super resolution convolutional

neural network (SRCNN), VDSR, and enhanced deep

super resolution (EDSR) [24-26]. SRCNN is one of the

earliest convolutional neural network (CNN) based SR

algorithms, characterized by a relatively simple architec-

ture. However, due to its shallow depth, its learning

capacity is limited, and its performance in improving

image quality is relatively constrained. Moreover, the

inherently low learning rate of SRCNN reduces its

Table 5. Image quality evaluation.

Dataset Scale factor

*PSNR (db) **SSIM

Bicubic interpolation Super resolution Bicubic interpolation Super resolution

MRI data

× 2 30.4 32.6 0.93 0.95

× 3 27.7 30.4 0.88 0.90

× 4 26.6 28.4 0.85 0.88

*, **p<0.05
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efficiency in practical applications [24]. VDSR, on the

other hand, consists of 20 deep convolutional layers,

enabling superior performance in image quality enhan-

cement compared to earlier models. It also allows for

higher learning rates, facilitating faster and more effective

training [24, 25]. EDSR, which was proposed after

VDSR, adopts a deeper residual learning-based architec-

ture and demonstrates improved reconstruction of high-

frequency image details. By eliminating batch normali-

zation layers, EDSR further enhances both training

stability and overall performance [26]. However, EDSR

requires greater computational resources and memory,

and it necessitates separate training for each upscaling

factor, which poses limitations for deployment in clinical

environments with restricted computational capacity.

Considering these factors, this study adopted VDSR as

the SR algorithm for image quality enhancement, based

on its structural simplicity, clinical applicability, and

training stability.

The VDSR algorithm used in this study was trained

over a total of 100 epochs. The training loss decreased

sharply during the initial epochs and gradually converged

in a stable manner after approximately 30 epochs. This

convergence trend indicates that the model achieved

sufficiently stable learning with respect to the training

data. In other words, such convergence behavior supports

the model’s training stability and reproducibility of

performance. The VDSR based SR algorithm imple-

mented in this study utilized high resolution MRI datas

that were first converted into the YCbCr color space, and

only the Y channel-representing luminance information-

was extracted and used for training. VDSR inherently

performs SR on the Y channel after converting input

images into the YCbCr space. Since the human visual

system is significantly more sensitive to luminance than

chrominance, applying SR to the Y channel has the

greatest impact on perceived image quality. During

training, the extracted Y channel was divided into 41 × 41

pixels patches to serve as inputs. This patch based

approach enables the model to focus on reconstructing

localized structures and is a standard implementation

method for VDSR, balancing memory efficiency and

training stability. Accordingly, in this study, special

attention was given to verifying whether MRI data were

correctly converted to the YCbCr color space and

whether the Y channel was accurately processed by the

algorithm without data loss. It was confirmed that both

the up-sampled MRI data and residual learning outputs

were successfully generated and saved to their designated

directories, indicating that the metastatic brain tumor MRI

data were correctly transformed into YCbCr format and

that VDSR-based residual learning was properly imple-

mented. Experimental results using the test dataset

showed that the algorithm successfully generated residual

images and reconstructed the super-resolved output

effectively. Although the residual learning structure

inherently produced some degree of noise suppression

during the high-resolution detail reconstruction, this was

considered a secondary effect. Notably, this study did not

employ a stitching method to reassemble patch based

outputs. To minimize the risk of aliasing artifacts that can

arise during patch sampling and reconstruction, low

resolution images were directly generated from high-

resolution ground truth MRI data [27]. Furthermore, since

the original images were acquired using a 3.0T MRI

system under uniform imaging parameters, any potential

aliasing effects were deemed negligible and not influential

on the experimental results.

The resulting PSNR and SSIM provided significant

insights for the study. First, compared to image post-

processing techniques, the VDSR algorithm showed

higher PSNR values across all scale factors, demonstrating

superior image quality improvement, which was also

statistically significant. One of the common issues with

deep neural networks is the reduction in the size of

feature maps as they pass through convolutional layers,

leading to the loss of pixel information containing

meaningful data. However, this algorithm applied padding

to preserve pixel information [24, 25]. The consistently

high PSNR values across all scale factors reflect this

feature of the algorithm. A similar trend was observed in

SSIM. 

A previous study using MRI data from patients with

trigeminal neuralgia demonstrated meaningful SR out-

comes based on 2D fast spin echo sequences. In contrast,

the present study utilized 3D turbo field echo sequences

and focused on solid metastatic brain tumors-lesions that

are commonly encountered in actual clinical practice.

Accordingly, differences exist in both the imaging

sequence and the target pathology. Unlike cranial nerve

structures, metastatic brain tumors exhibit diverse morpho-

logies and poorly defined boundaries, with tissue

characteristics that are fundamentally different. Therefore,

it is reasonable to expect that SR results in this context

may differ from those obtained in studies targeting neural

structures. Within this framework, the high SSIM values

achieved by the VDSR algorithm in this study suggest

that it effectively preserved and reconstructed the intrinsic

texture features of metastatic brain tumors during the

image reconstruction process. The high SSIM values

recorded by the VDSR algorithm suggest that it effec-

tively reconstructed and restored the unique texture
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components of metastatic brain tumors during the image

reconstruction process. Notably, despite variations in

SSIM across scale factors, there were no differences in

the radiosurgery system coordinates, indicating that

GKRS targeting was unaffected. In summary, this study

achieved the following key outcomes: (1) SR techniques

applied to MRI data provided consistent results even with

test data outside the training dataset; (2) SR was

successfully implemented for MRI data of metastatic

brain tumors, significantly improving PSNR; (3) the

VDSR algorithm effectively reconstructed and restored

the texture components of metastatic brain tumors; and

(4) despite SSIM not reaching 1, the consistency of

radiosurgery coordinates between GT and reconstructed

images confirms the feasibility of GKRS targeting. These

findings highlight the success and clinical applicability of

this study.

However, this study has certain limitations in terms of

MRI data handling and computational resources. First,

due to practical constraints related to computational

capacity and storage, the original DICOM images were

converted to 8-bit JPEG format for analysis. This

conversion reduces the dynamic range of the images,

which may affect the preservation of subtle anatomical

details, such as tumor boundaries, and could limit the

diagnostic utility of the reconstructed images to some

extent [27-30]. In future studies, it would be beneficial to

construct a training environment based on raw DICOM

data and to incorporate preprocessing steps such as

intensity normalization and window level adjustment.

These enhancements are expected to further improve the

clinical applicability of SR techniques.

Second, because the clinical data used in this study

were retrospectively collected under IRB approval, the

absolute number of metastatic brain tumor MRI cases was

limited. This limitation may affect the generalizability of

the SR algorithm’s performance and raises the potential

risk of overfitting [27-29]. Future studies should incorpo-

rate a broader range of imaging modalities and larger,

more diverse datasets to validate and enhance the

robustness of the proposed approach.

Third, due to limitations in available computational

resources, this study employed the VDSR algorithm

rather than more recent or advanced SR methods. Although

VDSR offers a balance between performance and com-

putational efficiency, recently proposed high performance

SR models have shown considerable promise in further

improving image quality. Therefore, if sufficient com-

putational power and time become available in the future,

it would be worthwhile to explore and apply these state-

of-the-art algorithms. It should be noted, however, that

introducing new algorithmic architectures or mathe-

matical models that have not been pre-trained may lead to

issues such as overfitting or slower convergence during

training. Nevertheless, with adequate time and computa-

tional capacity, these approaches could be progressively

investigated in future work.

And then, although the reconstructed images from the

SR algorithm showed SSIM values exceeding 0.88 when

compared to the GT, the differences introduced during the

reconstruction process were not clearly explained [31,

32]. The VDSR algorithm used in this study is a regression

based neural network architecture designed to reconstruct

high resolution images from single low resolution inputs.

Internally, it operates by repeatedly applying 3 × 3

convolutional layers and ReLU activation functions to

minimize pixel wise differences between the input and

target images. Unlike classification or object detection

tasks, VDSR does not involve explicit attention maps or

decision boundaries, which poses inherent limitations for

the direct application of explainable AI techniques. As a

result, in the context of radio surgical planning, recon-

structed images should be used as auxiliary information,

and the interpretation of data transformations during the

reconstruction process must be supported by both AI-

based analytical methods and clinical expertise [32-34].

Furthermore, additional experiments applying various

gamma knife treatment plans are warranted to enhance

the reliability and clinical relevance of the study’s findings.

5. Conclusions

Despite these limitations, this study holds significant

value in effectively improving the image quality of MRI

data and quantitatively analyzing its potential application

in the GKRS environment. These findings can serve as

foundational data for the future clinical adoption of AI-

based image reconstruction techniques in image-guided

surgical environments.
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