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Accurate and meticulous modeling of the hysteresis loops displayed by electrical steels under complex

waveforms with diverse magnetization intensities is of paramount importance for achieving the utmost

excellence in electrical equipment design.In particular, inverse hysteresis models are preferable in FEM for

deriving magnetic field values from vector potential to reduce iterations. However, the prevailing inverse

Preisach models, which are grounded in the inverse Everett function, fall short in elucidating the intrinsic

physical nature of hysteresis phenomena associated with the magnetization process. Moreover, their generalized

moving adaptations entail substantial computational costs when integrated with Finite Element Method (FEM)

software. This study presents a generalized, analytically derived inverse Preisach model.It characterizes an

analytical Everett function for the irreversible component while explicitly incorporating both hysteresis

dependence on magnetization state and reversible contributions. The resulting model guarantees accuracy for

symmetric and asymmetric minor loop simulations and enables straightforward FEM implementation.

Validation with B30P105 grain-oriented silicon steel measurements across varied excitation levels confirms

model accuracy, with computational performance benchmarked against conventional approaches.
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1. Introduction

Precise characterization of hysteresis behavior in electrical

steel sheets critically enables magnetic field analysis and

efficiency optimization in key electromagnetic devices

including motors and transformers [1]. 

Previous research has put forward a variety of approaches

for hysteresis modeling, including the Jiles - Atherton

model, the Preisach model, the energetic model, and the

Stoner - Wohlfarth model, among others [2-4]. Among

these, the classic Preisach model stands out as one of the

most widely used. Rooted in the physical assumptions of

magnetic dipoles, it offers a relatively high level of

simulation accuracy.

During the design of electrical equipment, the magnetic

vector potential A is commonly employed to analyze

magnetic field distribution through finite element analysis

(FEA). Under such circumstances, employing the forward

Preisach model—which relies on magnetic field strength

H to determine magnetic flux density B—often results in

a higher number of iterations. Consequently, the inverse

Preisach model emerges as a more suitable alternative for

this application.

Various inverse Preisach models have recently been

developed to improve FEM calculation speed [5, 6]. To

avoid solving double integrals in the Preisach model, an

Everett function-based inverse Preisach formulation has

been introduced in literature [7]. To address the requirement

of maintaining mathematical rigor in the distribution

function, researchers have subsequently developed a

modified inversion approach using a switch hysteresis

operator-based framework [8]. However, the above

models can only deal with a magnetization-independent

process. In that situation, the congruency property of the

inverse model is retained, which is inconsistent with the

nature of the magnetization process for ferromagnetic

materials, resulting in an error when simulating the minor

loops caused by PWM excitations. The magnetic polari-

zation behavior in materials is typically characterized by

two distinct mechanisms: reversible magnetization and

non-reversible (hysteretic) magnetization processes. As

per the moving Preisach model framework, the model's

congruency requirement can be strategically relaxed

through the integration of a feedback parameter [9].
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Nevertheless, the traditional moving model is an H-

based forward Preisach model, which is not convenient in

FEA. In [10], a generalized inverse Preisach model was

proposed in 2020 to consider the reversible and

magnetization-dependent components, achieving accurate

simulations of the minor loops. Although the model

mentioned above can reduce the times of the iterations as

it is a B-based inverse model, it still has an enormous

computational burden when incorporated with the FEM

program, as the Everett function used in the model is

discrete. The discrete Everett function can result in bad

convergence performance and need a large memory

space, which will increase the total execution time of the

whole FEA process. Thus, a generalized inverse Preisach

model with an analytical Everett function needs to be

further studied. To the best of our knowledge, the

computational efficiency of the model can be improved

by applying a closed-form Everett function [6, 11].

However, none of the abovementioned methods considered

the feedback coefficient in the magnetization process. 

This study develops a generalized analytical inverse

Preisach formulation. The non-reversible magnetic polari-

zation behavior is characterized using an analytical

Everett function framework. Reversible components coupled

with magnetization-dependent effects are integrated into

the analytical inversion model through temporal di-

scretization of the effective field parameters. Model

performance is rigorously validated by contrasting computed

hysteresis curves with experimental measurements obtained

from B30P105 grain-oriented electrical steel specimens.

2. The classical Preisach Model

The foundational Preisach model posits that ferromagnetic

materials comprise a vast ensemble of magnetic hysteresis

elements, each exhibiting characteristic rectangular-shaped

response curves. As illustrated in Fig. 1(a), the model

defines two critical switching thresholds ( and )

governing the ascending and descending transitions of each

hysteresis element. In this framework, H represents the

externally applied magnetic field intensity, while  denotes

the binary output state (+1 or -1) of the individual hysteresis

operator. The macroscopic magnetization behavior described

by the classical Preisach model can be mathematically

expressed as:

(1)

(2) 

Where  is the distribution function of the

Preisach hysteresis operator;  is the hysteresis

operator.

The output of the classical Preisach model can be

solved according to the diagram in Fig. 1(b), where the

hysteresis operator corresponds to the points in the

triangular region . The integration region S is

divided into two parts, the value of the hysteresis operator

is +1 in the S+ region, and the value of the operator is -1

in the S-region.

From (1), the classic Preisach model contains a

complex distribution function dual integral operation,

which will lead to the model with a cumbersome

parameter identification process and long calculation

time. To avoid the double integral problem, an Everett

function  is introduced into the classical Preisach

model, and (1) can be changed to:

(3)

Here,  denotes the magnetic intensity at the final

reversal point. However, when using (3) to incorporate

with the FEM, a large discrete matrix will generate, and it

is computationally very expensive.

3. Generalized analytical inverse 
Preisach model

3.1. The analytical Everett function in the forward

Preisach model

In the implementation of the conventional Preisach

framework, the Everett function formulation can be

mathematically represented using Lorentzian distributions

[6,12]. Parameter calibration for these methodologies

becomes computationally intensive due to the large

number of undetermined coefficients. To address this

complexity, an analytical Everett function formulation is

developed using hyperbolic tangent basis functions:

( ) ( , ) ( )



     


 M H H d d

0
( ( )) B H M H

   

 H 

 

E   

Hk

Fig. 1. (a) Preisach switched hysteresis operator. (b) Typical

Preisach diagram.
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(4)

Where  to e are the unknown parameters of the

analytical Everett function. It can be found that the

number of the parameters is vastly reduced, and the value

of the Everett function can be determined from the

descending branch of the concentric hysteresis loops as:

(5)

Where  is the peak value of magnetic flux density

in concentric hysteresis loop, and  corresponds to a

point on the descending branch.

3.2. Generalized Inverse Preisach model in analytical

form

The magnetic polarization process can be decomposed

into two distinct components: an irreversible magnetization

portion governed by hysteresis mechanisms, and a

reversible magnetization portion associated with elastic

deformation effects. While the classical Preisach framework

is inherently limited to modeling the irreversible component

through its hysteresis operator formalism, the reversible

contribution requires separate characterization using the

concept of reversible magnetic susceptibility:

(6)

Where  is the irreversible magnetization, and 

is the reversible magnetization.

The reversible magnetization exhibits exclusive depen-

dence on instantaneous magnetic state, with its contri-

bution being quantifiable through the parameter of

reversible magnetic susceptibility. Notably, the hysteresis

curve demonstrates distinct slope characteristics on either

side of the magnetic reversal inflection point. This

asymmetry stems from the system's complete reversibility

of magnetic response following directional changes in the

applied field, particularly after traversing the critical

reversal threshold. Consequently, the reversible suscepti-

bility coefficient ( ) can be experimentally determined

by evaluating the dM/dH gradient at the inflection regions

of concentric hysteresis loops. Upon obtaining this calib-

ration parameter, the reversible magnetization component

is mathematically expressed as:

(7)

In the simulation of the electric field under different

media, a single neural network is trained to find the

solution, where the partial differential equation's form

remains constant by adjusting various magnetic perme-

abilities. 

Within the framework of the moving Preisach model,

magnetization-dependent feedback mechanisms are intro-

duced to mitigate the rigid congruency constraints

inherent in classical formulations. This enhanced model

incorporates an adjusted magnetic field parameter H that

accounts for dynamic magnetization effects, with its

mathematical representation formulated as:

(8)

Where He is the adjusted magnetic intensity parameter,

and K is the feedback coefficient. The feedback coeffi-

cient can be obtained by the following formula [10]:

(9)

In this context, the term Me corresponds to the experi-

mentally measured magnetization, whereas M denotes the

corresponding value predicted by the classical Preisach

model formulation. The parameter  quantifies the

intrinsic magnetic susceptibility inherent to the principal

hysteresis trajectory.

To obtain an efficient inverse form of the above model,

a time-step difference on the magnetic field strength H is

employed for calculating the input from the output, with

the following formulation: 

(10)

In this context, the parameter Hi represents the instan-

taneous applied field intensity, whereas Hi+1 corresponds

to the subsequent field magnitude determined in the

following iterative step. The term (dB/dH)i denotes the

flux density gradient of Bi with respect to the prevailing

field intensity Hi at the current stage.

Computing the first-order derivative of equation (2),

dB/dH can be obtained: 

(11)

To incorporate magnetization feedback effects, the

effective field parameter is redefined in terms of the

nominal applied field intensity. This necessitates applying

the following mathematical adjustment to the differential

susceptibility term:

(12)
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Taking the first-order derivative of (8), dHe/dH can be

obtained.

(13)

By combining (11), (12), and (13), it can be obtained:

(14)

Taking the first order derivative of (6), dM/dHe can be

obtained by

(15)

where dMrev/dHe can be obtained from the (7), the dMirr/

dHe can be obtained from the (3) and (4), expressed as:

(16)

Here, Hk denotes the field magnitude at the preceding

reversal threshold. For H ≤ Hk, the system undergoes

demagnetization processes corresponding to downward

magnetic polarization; conversely, when H > Hk, upward

magnetization enhancement occurs. The schematic

diagram of the implemented inverse Preisach modeling

framework is illustrated in Fig. 2.

4. Results and Discussion

4.1. Parameters identifications of the model

The irreversible and reversible components of the

Preisach model were characterized through quasi-static

measurements of magnetic hysteresis loops performed on

B30P105 electrical steel using a ring-core experimental

configuration, as depicted in Fig. 3.

To characterize the irreversible and reversible

components within the Preisach framework, quasistatic

magnetic hysteresis measurements were conducted on

B30P105 electrical steel samples using a toroidal core

measurement configuration (Fig. 2). Corresponding

hysteresis curves were acquired under 5 Hz sinusoidal

excitations across varying peak flux density levels, with

results presented in Fig. 4(a). For validation of minor loop

simulation capabilities, additional measurements under 5

Hz PWM excitation waveforms (containing fundamental

frequency components) were performed, with corresponding

data shown in Fig. 4(b).

To obtain the unknown parameters of the analytical

Everett function, it is necessary to obtain the reversible

magnetization of the hysteresis loop. The reversible

magnetic susceptibility calculated value is fitted by an

exponential function with parameters as:

e
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Fig. 2. Flow chart of the proposed inverse Preisach model.
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(17)

Where g1 and g2 are the parameters to be determined,

the fitting results are shown in Fig. 5, and the equation

parameter values g1 is 5026 and g2 is -0.0307.

The irreversible component of the magnetic hysteresis

characteristics is isolated through experimental measurement

of loop trajectories, followed by mathematical extraction

of the reversible portion according to the formulation:

(18)

Based on the irreversible part of the quasi-static

hysteresis loops shown in Fig. 6, the calculated value of

the Everett function can be obtained through (5), and the

fitness parameters of (4) are determined and shown in

Table 1. The feedback coefficient K can be obtained by

calculating the average value of the feedback coefficient

at the negative saturation point of the descending branch

of different loops [10]. In this paper, the loops of

Bp=0.4 T, 0.8 T, and 1.2 T are used to identify the value

and identified as -5.694×10-7.

2

rev 1
( ) 

g H
H g e

irr meas rev
( ) ( ) M M H M H

Fig. 3. (Color online) Experimental setup for measuring hys-

teresis loops of B30P105.

Fig. 4. (Color online) The quasi-static hysteresis loops of silicon steel B30P105: (a) The hysteresis loops under sinusoidal

excitation. (b) The hysteresis loops under PWM excitation.

Fig. 5. (Color online) The reversible magnetic susceptibility of

the B30P105 electrical steel sheet.

Table 1. Parameters of the analytical Everett function.

a b c d e

18227 12.33 33934 15.036 -1.76



 580  Improved Inverse Preisach Model for Modeling Hysteresis Properties of Grain-Oriented Silicon Steel  Long Chen et al.

4.2. Verification of the simulated results

To validate the performance of the developed framework,

the simulated hysteresis characteristics generated by the

enhanced model under varying peak flux density

conditions are benchmarked against laboratory-measured

datasets. The Comparison of experimental and simulated

hysteresis loops of B30P105 silicon steel sheet (The

fundamental frequency is 5 Hz) is shown in Fig. 7. Fig.

7(a) illustrates the situation under sinusoidal conditions.

Fig. 7(b) and (c) depict the cases under 30% third

harmonic excitation with a harmonic phase angle of

190°and 0°, respectively. Fig. 7(d) presents the situation

under PWM excitation with a duty cycle of 0.9.

It can be found that the most simulated loops are in

good agreement with the measured ones, which can verify

the model's ability to simulate the global hysteresis

properties of the material. Because of the strong

nonlinearity in high flux density levels, the dM/dHe will

cause an error even if the Everett function is fitted well,

causing an error for the loops in relatively high magnetic

flux density levels. In other words, this is mainly because

under high magnetic flux density, a minor variation in the

magnetic flux can induce significant changes in the

magnetic field. Furthermore, the parameters of the

analytical function are not mutually independent during

the optimization process, making it difficult to accurately

capture such nonlinear variations once the solution

approaches its optimum. Due to the strong nonlinear

adaptability and generalization capability, deep neural

networks (DNNs) may be leveraged as a potential tool to

address simulation inaccuracies under high magnetic flux

Fig. 6. (Color online) The magnetization of the B30P105

electrical steel sheet.

Fig. 7. (Color online) Comparison of experimental and simulated hysteresis loops of B30P105 silicon steel sheet (The fundamental

frequency is 5 Hz): (a) Sinusoidal excitation. (b) 30% third harmonic excitation with harmonic phase angle 190°. (c) 30% third

harmonic excitation with harmonic phase angle 0°. (d) PWM excitation (The duty cycle is 0.9).
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densities. However, from Fig. 7(b) to 7(d), we can find

that the proposed model can well predict the asymmetric

minor loops caused by harmonic and PWM excitations

without measuring these situations before, which is very

promising from the engineering view. 

To evaluate comparative performance, both the predictive

accuracy and algorithmic efficiency of the novel methodology

versus the conventional approach [7] were systematically

analyzed. Benchmarking protocols involved quantifying

execution time requirements for 1000 sampling points per

magnetic cycle, with all computational tasks executed on

a standardized hardware platform featuring an Intel Core

i5-7300 processor (2.50 GHz base clock). Hysteresis loop

discrepancy metrics were determined via the mean absolute

percentage error calculation method, formulated as:

(19)

Where Hcal and Hmeas denote the computed and experi-

mentally obtained magnetic field intensity values respec-

tively, with N representing the total sampling points of

magnetic flux density within each magnetization cycle. As

tabulated in Table 2, the generalized analytical inverse

Preisach framework demonstrates significantly reduced

computational expenditure compared to legacy implemen-

tations, rendering it highly suitable for integration with

FEM. Notably, while the proposed methodology exhibits

marginally elevated error margins compared to the conven-

tional approach under field strengths exceeding 35.58 A/m,

its overall predictive accuracy across the entire flux density

spectrum shows substantial enhancement for both sinusoidal

and PWM excitation waveforms.

5. Conclusion

In this paper, a generalized analytical inverse Preisach

model is proposed by characterizing an analytical Everett

function of the irreversible magnetization component and

considering magnetization-dependent hysteresis and the

reversible magnetization part. Experimental evaluations

confirm that the developed model maintains notable

precision across both sinusoidal and non-sinusoidal

excitation waveforms, and the average calculation time is

much faster than the traditional method, which can be a

promising candidate for coupling with the FEM-based

simulations for the optimal design of electrical equipment.

For future work, nonlinear surrogate models based on

deep neural networks are expected to serve as promising

alternatives to multi-parameter analytical models, addressing

computational deviations under high magnetic flux densities.
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Table 2. The calculation results of the two models.

Traditional inverse model Proposed inverse model

Sinusoidal PWM Sinusoidal PWM 

Bp(T) σ1(%) T1 (s) σ2(%) T2 (s) σ3(%) T3 (s) σ4(%) T4 (s) 

0.7 14.38 10.58 24.91 10.15 11.5 1.05 12.86 1.35

1.0 9.32 11.52 15.23 10.74 8.35 0.993 5.58 0.76

1.3 4.62 11.77 12.35 11.06 8.06 1.24 10.68 0.626

Note: σ1-σ4 are the errors for different conditions, and the T1-T4 are the corresponding computing time.


