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Accurate and meticulous modeling of the hysteresis loops displayed by electrical steels under complex
waveforms with diverse magnetization intensities is of paramount importance for achieving the utmost
excellence in electrical equipment design.In particular, inverse hysteresis models are preferable in FEM for
deriving magnetic field values from vector potential to reduce iterations. However, the prevailing inverse
Preisach models, which are grounded in the inverse Everett function, fall short in elucidating the intrinsic
physical nature of hysteresis phenomena associated with the magnetization process. Moreover, their generalized
moving adaptations entail substantial computational costs when integrated with Finite Element Method (FEM)
software. This study presents a generalized, analytically derived inverse Preisach model.It characterizes an
analytical Everett function for the irreversible component while explicitly incorporating both hysteresis
dependence on magnetization state and reversible contributions. The resulting model guarantees accuracy for
symmetric and asymmetric minor loop simulations and enables straightforward FEM implementation.
Validation with B30P105 grain-oriented silicon steel measurements across varied excitation levels confirms

model accuracy, with computational performance benchmarked against conventional approaches.
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1. Introduction

Precise characterization of hysteresis behavior in electrical
steel sheets critically enables magnetic field analysis and
efficiency optimization in key electromagnetic devices
including motors and transformers [1].

Previous research has put forward a variety of approaches
for hysteresis modeling, including the Jiles - Atherton
model, the Preisach model, the energetic model, and the
Stoner - Wohlfarth model, among others [2-4]. Among
these, the classic Preisach model stands out as one of the
most widely used. Rooted in the physical assumptions of
magnetic dipoles, it offers a relatively high level of
simulation accuracy.

During the design of electrical equipment, the magnetic
vector potential A is commonly employed to analyze
magnetic field distribution through finite element analysis
(FEA). Under such circumstances, employing the forward
Preisach model—which relies on magnetic field strength
H to determine magnetic flux density B—often results in
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a higher number of iterations. Consequently, the inverse
Preisach model emerges as a more suitable alternative for
this application.

Various inverse Preisach models have recently been
developed to improve FEM calculation speed [5, 6]. To
avoid solving double integrals in the Preisach model, an
Everett function-based inverse Preisach formulation has
been introduced in literature [7]. To address the requirement
of maintaining mathematical rigor in the distribution
function, researchers have subsequently developed a
modified inversion approach using a switch hysteresis
operator-based framework [8]. However, the above
models can only deal with a magnetization-independent
process. In that situation, the congruency property of the
inverse model is retained, which is inconsistent with the
nature of the magnetization process for ferromagnetic
materials, resulting in an error when simulating the minor
loops caused by PWM excitations. The magnetic polari-
zation behavior in materials is typically characterized by
two distinct mechanisms: reversible magnetization and
non-reversible (hysteretic) magnetization processes. As
per the moving Preisach model framework, the model's
congruency requirement can be strategically relaxed
through the integration of a feedback parameter [9].
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Nevertheless, the traditional moving model is an H-
based forward Preisach model, which is not convenient in
FEA. In [10], a generalized inverse Preisach model was
proposed in 2020 to consider the reversible and
magnetization-dependent components, achieving accurate
simulations of the minor loops. Although the model
mentioned above can reduce the times of the iterations as
it is a B-based inverse model, it still has an enormous
computational burden when incorporated with the FEM
program, as the Everett function used in the model is
discrete. The discrete Everett function can result in bad
convergence performance and need a large memory
space, which will increase the total execution time of the
whole FEA process. Thus, a generalized inverse Preisach
model with an analytical Everett function needs to be
further studied. To the best of our knowledge, the
computational efficiency of the model can be improved
by applying a closed-form Everett function [6, 11].
However, none of the abovementioned methods considered
the feedback coefficient in the magnetization process.

This study develops a generalized analytical inverse
Preisach formulation. The non-reversible magnetic polari-
zation behavior is characterized using an analytical
Everett function framework. Reversible components coupled
with magnetization-dependent effects are integrated into
the analytical inversion model through temporal di-
scretization of the effective field parameters. Model
performance is rigorously validated by contrasting computed
hysteresis curves with experimental measurements obtained
from B30P105 grain-oriented electrical steel specimens.

2. The classical Preisach Model

The foundational Preisach model posits that ferromagnetic
materials comprise a vast ensemble of magnetic hysteresis
elements, each exhibiting characteristic rectangular-shaped
response curves. As illustrated in Fig. 1(a), the model
defines two critical switching thresholds (a and p)
governing the ascending and descending transitions of each
hysteresis element. In this framework, H represents the
externally applied magnetic field intensity, while y denotes
the binary output state (+1 or -1) of the individual hysteresis
operator. The macroscopic magnetization behavior described
by the classical Preisach model can be mathematically
expressed as:

M(H) = [[ ua, Byy.,(H)ded (1
o2p
B = pi,(H +M(H)) )

Where u(e, f) is the distribution function of the
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Fig. 1. (a) Preisach switched hysteresis operator. (b) Typical
Preisach diagram.

Preisach hysteresis operator; y,4(H) is the hysteresis
operator.

The output of the classical Preisach model can be
solved according to the diagram in Fig. 1(b), where the
hysteresis operator corresponds to the points in the
triangular region «> f. The integration region S is
divided into two parts, the value of the hysteresis operator
is +1 in the S+ region, and the value of the operator is -1
in the S-region.

From (1), the classic Preisach model contains a
complex distribution function dual integral operation,
which will lead to the model with a cumbersome
parameter identification process and long calculation
time. To avoid the double integral problem, an Everett
function E(«, f) is introduced into the classical Preisach
model, and (1) can be changed to:

M(H) = { M, —-2E(H,,H) (downward magnetization) 3)
M,+2E(H,H,) (upward magnetization)

Here, H, denotes the magnetic intensity at the final
reversal point. However, when using (3) to incorporate
with the FEM, a large discrete matrix will generate, and it
is computationally very expensive.

3. Generalized analytical inverse
Preisach model

3.1. The analytical Everett function in the forward
Preisach model

In the implementation of the conventional Preisach
framework, the Everett function formulation can be
mathematically represented using Lorentzian distributions
[6,12]. Parameter calibration for these methodologies
becomes computationally intensive due to the large
number of undetermined coefficients. To address this
complexity, an analytical Everett function formulation is
developed using hyperbolic tangent basis functions:
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E(a, ) = a(tanh(%} - tanh(g))s
+ ctanh(%) - tanh(Z))* + eap @
d d

Where o to e are the unknown parameters of the
analytical Everett function. It can be found that the
number of the parameters is vastly reduced, and the value
of the Everett function can be determined from the

descending branch of the concentric hysteresis loops as:
_ Maﬁ

M
E(a,ﬂ)=WT

®)

Where M, is the peak value of magnetic flux density
in concentric hysteresis loop, and M, corresponds to a
point on the descending branch.

3.2. Generalized Inverse Preisach model in analytical
form

The magnetic polarization process can be decomposed
into two distinct components: an irreversible magnetization
portion governed by hysteresis mechanisms, and a
reversible magnetization portion associated with elastic
deformation effects. While the classical Preisach framework
is inherently limited to modeling the irreversible component
through its hysteresis operator formalism, the reversible
contribution requires separate characterization using the
concept of reversible magnetic susceptibility:

MH)=M_(H)+M_,(H) 6)

Where M,,, is the irreversible magnetization, and M,
is the reversible magnetization.

The reversible magnetization exhibits exclusive depen-
dence on instantaneous magnetic state, with its contri-
bution being quantifiable through the parameter of
reversible magnetic susceptibility. Notably, the hysteresis
curve demonstrates distinct slope characteristics on either
side of the magnetic reversal inflection point. This
asymmetry stems from the system's complete reversibility
of magnetic response following directional changes in the
applied field, particularly after traversing the critical
reversal threshold. Consequently, the reversible suscepti-
bility coefficient ( y,., ) can be experimentally determined
by evaluating the dM/dH gradient at the inflection regions
of concentric hysteresis loops. Upon obtaining this calib-
ration parameter, the reversible magnetization component
is mathematically expressed as:

ev

M (H) = [ g (H)dH (7)

In the simulation of the electric field under different

=577 -

media, a single neural network is trained to find the
solution, where the partial differential equation's form
remains constant by adjusting various magnetic perme-
abilities.

Within the framework of the moving Preisach model,
magnetization-dependent feedback mechanisms are intro-
duced to mitigate the rigid congruency constraints
inherent in classical formulations. This enhanced model
incorporates an adjusted magnetic field parameter H that
accounts for dynamic magnetization effects, with its
mathematical representation formulated as:

H, =H+KM ®)

Where H. is the adjusted magnetic intensity parameter,
and K is the feedback coefficient. The feedback coeffi-
cient can be obtained by the following formula [10]:

M. -M
M

K (€))

In this context, the term M, corresponds to the experi-
mentally measured magnetization, whereas M denotes the
corresponding value predicted by the classical Preisach
model formulation. The parameter y quantifies the
intrinsic magnetic susceptibility inherent to the principal
hysteresis trajectory.

To obtain an efficient inverse form of the above model,
a time-step difference on the magnetic field strength H is
employed for calculating the input from the output, with
the following formulation:

H, = H o+ b (10)

(dB/dH)

In this context, the parameter H; represents the instan-
taneous applied field intensity, whereas H;.; corresponds
to the subsequent field magnitude determined in the
following iterative step. The term (dB/dH); denotes the
flux density gradient of B; with respect to the prevailing
field intensity H; at the current stage.

Computing the first-order derivative of equation (2),
dB/dH can be obtained:

i

a8
dH

To incorporate magnetization feedback effects, the
effective field parameter is redefined in terms of the
nominal applied field intensity. This necessitates applying
the following mathematical adjustment to the differential
susceptibility term:

=uo<1+‘fEM) (11)

dM _ dM dH,

= (12)
dH  dH, dH
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Taking the first-order derivative of (8), dH./dH can be
obtained.

dH, | g dM (13)
dH

By combining (11), (12), and (13), it can be obtained:
av

dB dH,
o () (14)
dH 1 g 9M
dH,
Taking the first order derivative of (6), dM/dH. can be
obtained by
dM dM,, . am

rey ( 1 5)
dH,  dH,  dH,

e

where dM,.,/dH, can be obtained from the (7), the dM,./
dH, can be obtained from the (3) and (4), expressed as:

[ 5a h Byvany o 2k
r (tanh(;) - tanh(;) )(1—tanh (b )
4c h Mvagy 2 h
_+ 7 (tanh(g) - tanh(g) (1—-tanh (d)) +eh, ]

aMm H>H,
e [ 5a hy _ ﬁ 4 2 ﬁ _ ]
j(tanh(?) tanh(b) )(tanh (b) D (16)

_+ % (tanh(%) - tanh(g)4 (tanh’ (g) —1)+eh, ]

H<H,

Here, H, denotes the field magnitude at the preceding
reversal threshold. For H < H;, the system undergoes
demagnetization processes corresponding to downward
magnetic polarization; conversely, when H > H,, upward
magnetization enhancement occurs. The schematic
diagram of the implemented inverse Preisach modeling
framework is illustrated in Fig. 2.

4. Results and Discussion

4.1. Parameters identifications of the model

The irreversible and reversible components of the
Preisach model were characterized through quasi-static
measurements of magnetic hysteresis loops performed on
B30P105 electrical steel using a ring-core experimental
configuration, as depicted in Fig. 3.

To characterize the irreversible and reversible
components within the Preisach framework, quasistatic
magnetic hysteresis measurements were conducted on
B30P105 electrical steel samples using a toroidal core
measurement configuration (Fig. 2). Corresponding
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Fig. 2. Flow chart of the proposed inverse Preisach model.

hysteresis curves were acquired under 5 Hz sinusoidal
excitations across varying peak flux density levels, with
results presented in Fig. 4(a). For validation of minor loop
simulation capabilities, additional measurements under 5
Hz PWM excitation waveforms (containing fundamental
frequency components) were performed, with corresponding
data shown in Fig. 4(b).

To obtain the unknown parameters of the analytical
Everett function, it is necessary to obtain the reversible
magnetization of the hysteresis loop. The reversible
magnetic susceptibility calculated value is fitted by an
exponential function with parameters as:
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Fig. 5. (Color online) The reversible magnetic susceptibility of
the B30P105 electrical steel sheet.

Table 1. Parameters of the analytical Everett function.

Fig. 3. (Color online) Experimental setup for measuring hys-
teresis loops of B30P105.

H|

Ze(H) = g€ a7

Where g; and g, are the parameters to be determined,
the fitting results are shown in Fig. 5, and the equation
parameter values g; is 5026 and g, is -0.0307.

The irreversible component of the magnetic hysteresis
characteristics is isolated through experimental measurement
of loop trajectories, followed by mathematical extraction
of the reversible portion according to the formulation:

Mirrszeas(H)_Mrev(H) (18)
15F —Bp=0.3T
Loll™ Bp:0.6T
— =B=09T
03F- —B=1.2T
~ p ~
ool — B,=1.5T =
A Q
-0.5F
-1.0+
-1.5F
80 -60 -40 -20 O 20 40 60 80
H (A/m)

a b [ d e
18227 12.33 33934 15.036 -1.76

Based on the irreversible part of the quasi-static
hysteresis loops shown in Fig. 6, the calculated value of
the Everett function can be obtained through (5), and the
fitness parameters of (4) are determined and shown in
Table 1. The feedback coefficient K can be obtained by
calculating the average value of the feedback coefficient
at the negative saturation point of the descending branch
of different loops [10]. In this paper, the loops of
B,=04T, 08T, and 1.2 T are used to identify the value
and identified as -5.694x107.

1 1 1 1 1 1 1

=30 -20  -10 0 10 20 30
H (A/m)

5
-40 40

Fig. 4. (Color online) The quasi-static hysteresis loops of silicon steel B30P105: (a) The hysteresis loops under sinusoidal

excitation. (b) The hysteresis loops under PWM excitation.
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Fig. 6. (Color online) The magnetization of the B30P105
electrical steel sheet.

4.2. Verification of the simulated results

To validate the performance of the developed framework,
the simulated hysteresis characteristics generated by the
enhanced model under varying peak flux density
conditions are benchmarked against laboratory-measured
datasets. The Comparison of experimental and simulated
hysteresis loops of B30P105 silicon steel sheet (The
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fundamental frequency is 5 Hz) is shown in Fig. 7. Fig.
7(a) illustrates the situation under sinusoidal conditions.
Fig. 7(b) and (c) depict the cases under 30% third
harmonic excitation with a harmonic phase angle of
190°and 0°, respectively. Fig. 7(d) presents the situation
under PWM excitation with a duty cycle of 0.9.

It can be found that the most simulated loops are in
good agreement with the measured ones, which can verify
the model's ability to simulate the global hysteresis
properties of the material. Because of the strong
nonlinearity in high flux density levels, the dM/dH, will
cause an error even if the Everett function is fitted well,
causing an error for the loops in relatively high magnetic
flux density levels. In other words, this is mainly because
under high magnetic flux density, a minor variation in the
magnetic flux can induce significant changes in the
magnetic field. Furthermore, the parameters of the
analytical function are not mutually independent during
the optimization process, making it difficult to accurately
capture such nonlinear variations once the solution
approaches its optimum. Due to the strong nonlinear
adaptability and generalization capability, deep neural
networks (DNNs) may be leveraged as a potential tool to
address simulation inaccuracies under high magnetic flux
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Fig. 7. (Color online) Comparison of experimental and simulated hysteresis loops of B30P105 silicon steel sheet (The fundamental
frequency is 5 Hz): (a) Sinusoidal excitation. (b) 30% third harmonic excitation with harmonic phase angle 190°. (c) 30% third
harmonic excitation with harmonic phase angle 0°. (d) PWM excitation (The duty cycle is 0.9).
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Table 2. The calculation results of the two models.
Traditional inverse model Proposed inverse model
Sinusoidal PWM Sinusoidal PWM
By(T) o1(%) T\ (s) (%) T3 (s) a3(%) T (s) 04(%) 74 (5)
0.7 14.38 10.58 2491 10.15 11.5 1.05 12.86 1.35
1.0 9.32 11.52 15.23 10.74 8.35 0.993 5.58 0.76
1.3 4.62 11.77 12.35 11.06 8.06 1.24 10.68 0.626

Note: o1-04 are the errors for different conditions, and the 7}-7, are the corresponding computing time.

densities. However, from Fig. 7(b) to 7(d), we can find
that the proposed model can well predict the asymmetric
minor loops caused by harmonic and PWM excitations
without measuring these situations before, which is very
promising from the engineering view.

To evaluate comparative performance, both the predictive
accuracy and algorithmic efficiency of the novel methodology
versus the conventional approach [7] were systematically
analyzed. Benchmarking protocols involved quantifying
execution time requirements for 1000 sampling points per
magnetic cycle, with all computational tasks executed on
a standardized hardware platform featuring an Intel Core
15-7300 processor (2.50 GHz base clock). Hysteresis loop
discrepancy metrics were determined via the mean absolute
percentage error calculation method, formulated as:

1 N
G—N;

Where H, and H,.,s denote the computed and experi-
mentally obtained magnetic field intensity values respec-
tively, with N representing the total sampling points of
magnetic flux density within each magnetization cycle. As
tabulated in Table 2, the generalized analytical inverse
Preisach framework demonstrates significantly reduced
computational expenditure compared to legacy implemen-
tations, rendering it highly suitable for integration with
FEM. Notably, while the proposed methodology exhibits
marginally elevated error margins compared to the conven-
tional approach under field strengths exceeding 35.58 A/m,
its overall predictive accuracy across the entire flux density
spectrum shows substantial enhancement for both sinusoidal
and PWM excitation waveforms.

H meas H cal

x100% (19)

meas

5. Conclusion

In this paper, a generalized analytical inverse Preisach
model is proposed by characterizing an analytical Everett
function of the irreversible magnetization component and
considering magnetization-dependent hysteresis and the
reversible magnetization part. Experimental evaluations
confirm that the developed model maintains notable

precision across both sinusoidal and non-sinusoidal
excitation waveforms, and the average calculation time is
much faster than the traditional method, which can be a
promising candidate for coupling with the FEM-based
simulations for the optimal design of electrical equipment.
For future work, nonlinear surrogate models based on
deep neural networks are expected to serve as promising
alternatives to multi-parameter analytical models, addressing
computational deviations under high magnetic flux densities.
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