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Measuring the grain size of electrical steel is important for understanding its properties, but until now studies

have attempted this using experimental equations or machine learning (ML), resulting in limited models. This

study applied three ML and Explainable-AI (XAI) to analyze magnetic properties and identify key the factors

most relevant to grain size prediction. Among the three tree-based models, B4_Br/Bm, B10_Pcm were identified

as key variables. It was also found that variables under B1, B4, B10 conditions accounted for 60% of the model

explanation ratio. Final model was constructed using these variables. These findings demonstrate the potential

of ML with XAI to predict grain size with fewer magnetic measurement.
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1. Introduction

Evaluation of Grain size is important in the steel

manufacturing process. This is because grain size affects

not only mechanical properties such as strength and

ductility, but also several properties such as corrosion and

magnetic properties, weldability, electrical performance,

etc. This is well illustrated by the several relative equation,

for instance Hall-Petch equation and the Magnetic Core

Loss equation, etc. 

In electrical steel used as the core material for motors

and transformers, controlling grain size is essential, as it

significantly affects both mechanical and magnetic

properties. In the electrical steel manufacturing process,

grain size is regularly measured to evaluate the quality of

steel sheets. Also, it has been noted that rolling technology

is limited to producing a 0.2 mm thick electrical steel

sheet with a thickness of 0.1 mm or less in a single

process, because when Si is high, a problem occurs in

which it is difficult to lower the pressure reduction rate.

Many studies aim that thinner sheet results in better

magnetic properties of the sheet metal, i.e. lower losses.

so two rolling processes have studied [1-3]. As mentioned

earlier in this study, since grain size has a great influence

on the magnetic properties of the steel plate, it is

necessary to study and evaluate the specimen by securing

the thickness of 0.1 mm through two rolling processes in

our paper. 

In continuous electrical steel production, real-time grain

size control is important to ensure uniform material

properties. Magnetic measurement, which only requires

the application of a magnetic field, has been widely

explored as a non-destructive alternative for grain size

evaluation [4-10]. With research in this field still in its

early stages since the late 1990s, research has been

conducted to find linear relationships and regression

equations between magnetic properties of materials and

grain size [4]. Some research, attempts have been made to

quantify the relationship between magnetic properties

such as core loss, permeability, and flux density and grain

size [5, 6].

However, the challenge lies in the microscopy method's

limitation to only a few millimeter-sized specimens,

which does not reflect the average grain size of larger

areas. Also, grain size is commonly measured for long

time using optical microscopy, which involves mounting,

polishing, and etching the samples. Thus this makes the

rapid measurement of large areas a significant challenge.
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This difficulty is compounded by variability, such as grain

size alterations resulting from unexpected equipment

changes, which often lead to deviations from the desired

material specifications and lead to defects. It is difficult to

determine, which conditions are related to the grain size,

the interaction of various variables because there are AC

measurements of the magnetic field, and in the case of

AC, the conditions for applying the magnetic field from

low frequency to high frequency ranging from hundreds

to hundreds of thousands of Hz. In addition, the resulting

values from each hysteresis loop provide many factors.

AC various in frequency (Hz), and the parameters obtained

from the hysteresis loop (coercivity, iron loss, flux

density, etc.) are all potential factors. This results in over

100 variables to consider, as measuring just 10 frequencies

typically made more than 10 derived parameters per

frequency.

So, a solution to this challenge has been necessary.

Quantitative analysis techniques have been developed

until now. For example, since the early 2000s, research on

predicting grain size using machine learning techniques

such as Feed Forward Neural Networks (FFNN) has been

actively tried. Recent grain size prediction have studied to

incorporate not only magnetic properties but also various

non-destructive testing data, such as ultrasonic and coda

waves [7-10].

In continuous electrical steel production magnetic

measurement is considered to be the most advantageous

approach for enabling real-time grain size control, although

various methods have been explored. To overcome this

limitation, Explainable Artificial Intelligence (XAI) techniques

such as Permutation Feature Importance (PFI) and Shapley

Additive Explanations (SHAP) were introduced to

identify the key magnetic properties contributing to grain

size. These techniques are effective to offer insight into

the influence and importance of each variable, these have

been used in drug discovery and manufacturing and have

been shown to be effective [11-13]. Also, studies were

tried to predict the grain size of low carbon steel with a

Bayesian ANN model by evaluating the importance of

input variables through Reversible Jump Markov Chain

Monte Carlo (RJMCMC) [14], and to evaluate the

importance of variables in a model using SHAP analysis

to influence the growth behavior of austenite grains in a

reheating process [15]. 

To address this challenge, we have studied to solve the

problem by using PFI and SHAP analysis, which are XAI

techniques based on machine learning and deep learning

to address the black box problem and improve model

interpretability. Provided that the important factors are

identified, an indirect method for measuring grain size

may be established, offering significant potential for

efficient grain size evaluation in the continuous production

of metallic materials such as steel. Although the reasoning

behind AI-driven variable selection may be difficult to

interpret, this approach could significantly reduce the

defect rate in manufactured materials and contribute to a

non-destructive grain size measurement process.

2. Design Framework and 
Experimental Procedure

Fig. 1 shows the flowchart of the entire process of

training and optimizing the model, identifying highly

descriptive input variables through XAI, and as a final

step, formulating the relationship expression with grain

size. The training and test datasets were randomly divided

in a 70:30 ratio using scikit-learn's train-test-split, and the

random seed was fixed to ensure reproducibility. As a

result, a DataFrame with 165 input variables and approxi-

mately 100 rows was used for training and testing. To

impute missing values in the input variables, Simple-

Imputer, IterativeImputer, and KNNImputer from scikit-

learn were applied, and their performance was evaluated

using Mean Squared Error (MSE) with the Random-

ForestRegressor (RFR) model. The DataFrame imputed

by IterativeImputer showed the lowest MSE (Table 1),

and was consequently selected for preprocessing. To

enhance its performance, a LightGBM-based version of

Fig. 1. (Color online) Simulation process flow chart.

Table 1. MSE comparison of Different Imputation Methods.

Model MSE

IterativeImputer 284.17

kNNImputer 298.85

SimpleImputer 287.08
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the IterativeImputer was employed, leveraging correlations

among variables in an iterative manner. After imputation,

MinMaxScaler was applied to normalize all feature values

between 0 and 1, improving model training efficiency.

Five models were trained: eXtreme Gradient Boosting

(XGBoost) [16], Deep Neural Networks (DNN) [17],

Tree Based Pipeline Optimization Tool (TPOT) [18],

Random Forest Regressor (RFR) [19], Gaussian Process

Regressor (GPR) [20] The TPOT model, which is part of

the AutoML package, is one of the models utilized in

many machine learning studies, and the other four models

are already used in many research fields that are related to

materials science and engineering theory. These five

models were subjected to hyperparameter optimization.

XGBoost and RFR models were tuning using Ran-

domizedSearchCV. DNN model was optimized using

Adam and MSE loss function, with early stopping and

cross-validation applied to prevent overfitting and evaluate

performance via RMSE and R2. GPR model was optimized

using Bayesian methods with Skopt’s gp_minimize, tuning

the RBF kernel’s length scale and noise level (alpha).

TPOT, an AutoML tool, applied genetic programming to

build and optimize pipelines consisting of feature engi-

neering, hyperparameter tuning, and model evaluation. As

the data were preprocessed beforehand, preprocessing

operators were excluded by customizing the config_dict.

The R-Squared (R2) and Root Mean Square Error

(RMSE) values of the five models were compared to

selecting the best performing models and the three

models optimized for DataFrame. 

Following this, to increase the explanatory ability of the

model, SHAP and PFI were used as XAI techniques.

SHAP uses the Shapley value for each input variable to

determine the SHAP value of the variable.

(1)

i is the Shapley value of a particular input variable

value, S is the set of input variables excluding a particular

variable, F is the set of input variables including a

particular variable, |S|, |F| are the sizes of the sets, and vS
is the predicted value of the machine learning model.

These Shapley values help illustrate how a model predicts

outcomes based on linear combinations of input features

[15]. PFI is a method for evaluating how important a

particular feature is to the performance of a prediction

model [21]. This method measures the importance of each

input variable by training a model and then randomly

shuffling the values of certain features in the dataset and

observing the effect on the model's performance.

(2)

The permutation importance PFIi represents the impact of

the ith variable, calculated as the difference between the

model performance without shuffling (rs) and the average

performance after shuffling the variable J times. This

reflects the extent to which model performance degrades

when that variable is altered. By applying XAI techniques,

the black box nature of the models was addressed, and

explanatory capability was improved by identifying key

magnetic properties contributing most to grain size pre-

diction and interpreting them through materials science.

The library versions used for machine learning and

optimization are scikit-learn 1.6.1 [22], SHAP 0.46.0

[11], and Python version 3.12.7. As a final step, the

magnetic condition with the highest combined PFI and

SHAP values was selected, a linear regression equation

was derived using the corresponding input variables

through ElasticNet, and modeling was performed using

RFR.

In the experiments in this paper, a commercial specimen

of 0.5 mm NO electrical steel was rolled to 0.1 mm. The

SH-FU-80LTG instrument was used for heat treatment as

shown in Table 2. Heat treatment was conducted under

vacuum conditions (~10⁻⁴ torr). The specimens were

inserted into a furnace that had been preheated to the

target temperature, enabling rapid heating and allowing

the specimens to reach the desired temperature within a

short time. Since the specimens used in this study were

very thin (0.1 mm), experimental measurements showed

that they reached the target temperature within 2–3

minutes, corresponding to a heating rate of over 500°C/

min. The annealing time was defined as the duration after

the specimen had reached the target temperature, and the

heating period required to reach this temperature was

excluded accordingly. After annealing, the specimens

were air-cooled under vacuum conditions. The main

elements are Si 0.6 wt% and Al 0.3 wt% by X-Ray

Fluorescence Spectrometer (XRF). The instrument used

for the analysis was an XRF from Rigaku (Rigaku/ZSX-

Primus IV). The flux density, frequency, and notation are

summarized in Table 3. The flux density is expressed in B

i = S F

S ! F S– 1– 

F !
----------------------------------------- vS i  xS i   vS xS – 

PFIi = rs
1

J
---–  

j=1

J

 si j

Table 2. Experimental conditions for heat treatment: time,

temperature and vacuum level.

Annealing 

parameters
Time Temperature Vacuum level

values 0.2–44 min 800–1100 ℃ 5 × 104 torr
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[Tesla] and the core loss is expressed in W [Watt/kg].

These fix parameters were chosen because they are

frequently used in recent electrical steel performance

studies. Several magnetic field conditions and low

frequency 50 Hz to high frequency 20 kHz were set to

reproduce the magnetic situation that is commonly

encountered in actual motors and transformers. All

measurements were tested using a single sheet tester

(SST) to evaluate AC magnetic properties by various

frequencies. The analysis was based on magnetic data

obtained from hysteresis loops corresponding to different

frequencies and magnetic field conditions. These

measurement conditions are summarized in Table 4. At a

given flux density and frequency condition, the following

data are obtainable: Bm(T), Br(T), Hm(A/m), Hc(A/m),

Pc(W), Pcv(kW/m3), Pcm(W/g), a, Br/Bm, 2m(Wb),

phase(deg.). About 100 specimens were heat treated, and

in the case of where the dependent variable grain size row

was missing, the missing rows were processed using

dropna. After preprocessing the missing data, a Data-

Frame containing 165 input variables was then used for

training and validation. The relationship between magnetic

and electrical steel performance for the less commonly

used magnetic properties: Pcv, Pcm, a, 2m, phase(deg.).

is summarized in Table 4.

A total of 11 magnetic properties were measured using

IWATSU's SY-8219 model, a single sheet tester and 0.1

mm thick electrical steel sheets were used. Since the

specimen size for magnetic measurements is > 40 mm ×

10 mm, the specimen was sized as shown in Fig. 2, the

specimens were tested to size. Based on these data, a

model was built to predict the grain size from the

magnetic properties of the steel sheet.

Prior to the heat treatment and grain size measurement

experiments, a phase field-based Finite Volume PDE

Solver Using Python (FiPy) simulation [23] was conducted

to identify grain growth tendencies under different heat

Fig. 2. (Color online) The size of the specimen used for mag-

netic measurements is 40 × 10 mm, and its thickness is 0.1

mm.

Table 3. Fixed parameters (Flux Density, Frequency) for mea-

suring magnetic properties.

fix param fix value fix unit freq (kHz) Notation

Hm 100 A/m 0.05 B1

Hm 400 A/m 0.05 B4

Hm 800 A/m 0.05 B8

Hm 1000 A/m 0.05 B10

Hm 2500 A/m 0.05 B25

Bm 50 mT 20 W0.5/20000

Bm 100 mT 10 W1/10000

Bm 200 mT 5 W2/5000

Bm 500 mT 2 W5/2000

Bm 1000 mT 1 W10/1000

Bm 1000 mT 0.8 W10/800

Bm 1000 mT 0.4 W10/400

Bm 1000 mT 0.1 W10/100

Bm 1000 mT 0.05 W10/50

Bm 1000 mT 0.01 W10/10

Table 4. Explain magnetic properties.

Properties Related by electrical steel Key determinants

P
cv

(kW/m3) 

(Core Loss per Volume)

related to the efficiency of the transformer and motor core, lower 

losses increase efficiency and reduce heat generation

Steel sheet density, wt% Si, insulation coating, 

thickness 

P
cm

(W/g)

(Core Loss per Mass)

High power density motors and transformers require consider-

ation of lightweight core design

Density, silicon content, insulating properties


a
 

(Absolute Permeability)

High permeability allows easy magnetic field transmission, 

enhancing transformers and motor core performance.

Grain size, crystal structure (Goss Texture), cold 

working, and heat treatment.

Br/Bm

(Remanence Ratio)

High values indicate greater hysteresis loss; reducing this is cru-

cial in low-loss steel sheets.

Texture, grain size, cold working.

2
m
(Wb)

(Double Maximum Mag-

netic Flux)

Used to analyze the magnetic properties of the core in transform-

ers.

Magnetic field strength, core shape, frequency.

phase(deg.) 

(Phase Difference)

High phase difference indicates significant energy loss, which is 

more affected as frequency increases.

Magnetic resistance, hysteresis properties, fre-

quency.
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treatment conditions and to optimize the heat treatment

parameters for improved experimental efficiency. The

Phase Field model is a computational framework that

models microstructural changes inside a material using a

continuous phase variable () to predict the growth

behavior of complex microstructures over time. FiPy is a

Python-based software that enables thermodynamically

based simulations using the finite volume method [23].

(3)

The free energy density function, F, represents the

thermodynamic stability of  driven by the simulation.

fbulk() drives the system to converge to a phase with

lower energy, Interface energy term, and the interface

energy term, fgradient() represents the spatial variation of

the interface at the phase boundary. These two terms are

used to predict how the microstructure of a material

changes under specific conditions using the above

equation.

(4)

The Allen-Cahn equation is used to model phase

transformations and the movement of phase boundaries

by tracking changes in the state variable over time [24].

In this model, ε controls interfacial energy, and f(u),

derived from potential energy, drives the system toward

stability. The simulation is applied to predict grain growth

and the resulting grain size distribution under various heat

treatment conditions. The FiPy library used for the

simulations was version 3.4.5.

To measure the grain size of the specimen, the

specimen was polished by electropolishing followed by

etching with nital solution. The electrolyte for electro-

polishing, a mixture of glacial acetic acid (99.5%) and

perchloric acid (60.0%) in a 3:1 ratio, was used. Electro-

polishing was employed using a BUEHLER ElectroMet4

device. The specimen was then etched in a 5% dilution of

nitric acid in ethanol (nital solution) for 90 seconds. All

processes were performed at room temperature (23 ± 2 ℃).

The microstructure was observed at 100× magnification

using an optical microscope, and average grain size was

determined from nine randomly selected areas per

specimen using the linear intercept method in accordance

with ASTM E112.

3. Results and Discussion

Fig. 3 shows the grain growth simulation results using

FiPy at 800 °C, 950 °C, and 1100 °C according to heat

treatment time. In Fig. 3(a), the heat treatment condition

involves heating from room temperature (25 °C) to each

target temperature over 10 seconds, followed by holding

at that temperature for 240 seconds. Cooling is then

carried out back to room temperature over a period of 60

seconds. The simulated average grain sizes at each

temperature were 25.01 m, 46.62 m, and 83.25 m,

respectively. As shown in Fig. 3(b), when compared with

the experimental results, the largest difference was

observed at 1100 °C, with a deviation of 6.1 m. 

Fig. 4 shows the grain size measurements extracted

from the total heat treatment conditions specifically at 1,

2, 3, 4, 6, 8, 12, 16, and 20 minutes for each temperature.

At 1100 ℃, heat treatment was performed only for 1, 2,

and 3 minutes. The grain size showed a gradual increase

as the temperature increased from 800 ℃ to 1100 ℃.

F =  

V

 fbulk   fgradient  + dV

u

t
------- = 

2

u f u –

Fig. 3. (Color online) Results of the grain growth simulation using FiPy (a) at 800 ℃, 950 ℃, 1100 ℃, (b) comparison between

experimental values and simulation results.
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Grain size was observed using an optical microscope, as

shown in Fig. 5. At temperatures above 1050 ℃, grain

growth and recrystallized phenomena leading to irregular

and large grain boundaries are observed. The heat

treatment conditions at each temperature were set based

on the FiPy simulation results, which allowed us to

produce specimens with different grain sizes. 

The final pipeline for the TPOT model is shown in Fig.

6 as a flowchart. This pipeline is a regression model with

stacking. The first pipeline cross-validated the Ridge

regression, and the second and third pipelines used the

ExtraTreesRegressor regression model. This model is like

RandomForest but differs in that it randomizes the

selection of features and split points during tree gene-

ration. This has the advantage of helping to reduce the

variance of the model, which prevents overfitting. The

final pipeline uses the Elastic Net model, which uses L1

regularization to simultaneously control feature selection

and regularization in regression. The hyperparameters in

each model were optimized using AutoML. Subsequently,

the hyperparameters in each model were optimized using

different techniques: RandomizedSearchCV for the RFR

and XGBoost models, Bayesian optimization for the GPR

model, and the Adam optimizer with the MSE loss

Fig. 4. (Color online) Optical micrographs of cold rolled spec-

imens after annealing at (a) 800 ℃, (b) 850 ℃, (c) 900 ℃, (d)

950 ℃, (e) 1000 ℃, (f) 1050 ℃, (g) 1100 ℃.

Fig. 5. Measuring grain size based on heat treatment temperature and time.

Fig. 6. (Color online) Optimized TPOT pipeline.
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function for the DNN model.

Table 5 compares the R2 and RMSE values of the

models. After modeling and optimization, the best

performing model is XGBoost, which has the highest R2

(=0.79) and the lowest RMSE (=12.64). GPR recorded

the lowest R2 (=0.71) and the highest RMSE (=17.19).

This may be because GPR is vulnerable to noise or

complex interactions among high-dimensional variables,

and the amount of data may not have been sufficient.

When comparing the results of tree-based models (TPOT,

XGBoost, RFR), the average R2 value was 0.76 and the

average RMSE was 14.56. In contrast, the neural

network-based models (GPR, DNN) showed relatively

lower performance, with an average R2 of 0.72 and

RMSE of 15.15.

The input variables selected for the PFI of each model

were compared and analyzed to assess whether the model

predictions could be explained based on material properties.

A higher PFI value indicates a greater contribution of the

variable to the model's performance. In addition, the

SHAP values of each model were compared and analyzed

to understand the explanatory capability of the models

Table 5. Model performance comparison.

TPOT XGBoost RFR GPR DNN

R2 0.75 0.79 0.74 0.71 0.73

RMSE 14.63 12.64 16.4 17.19 13.1

Fig. 7. (Color online) PFI bar plot of each model (a) TPOT, (b) XGBoost, (c) RFR, (d) GPR, (e) DNN.
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and the relationship between each variable and grain size.

The SHAP value of each variable indicates the importance

of that variable to the model output. Fig. 7 shows the bar

plot of the top 10 PFI values of each model, and Fig. 8

shows the input variables with the top 10 mean absolute

SHAP values of each model.

Tables 6 and 7 present the results ranked after at least

10 iterations, summarizing the top five features in

descending order of importance. In the tree-based model,

the influence of magnetic property features measured at

low frequency flux density such as B4_Br/Bm, B4_phase

(deg.), B10_Pcm(W/g) is high. But, in the neural network-

based models, features measured at specific core losses

such as W1/10000_Bm(T), W10/10_a were more influential.

Fig. 8. (Color online) |SHAP| value bar plot of each model (a) TPOT, (b) XGBoost, (c) RFR, (d) GPR, (e) DNN.

Table 6. Rank of PFI value.

TPOT XGBoost RFR GPR DNN

B4_Br/Bm B4_Br/Bm B4_phase(deg.) W1/10000_Bm(T) W1/10000_Bm(T)

W1/10000_Bm(T) B1_phase(deg.) B10_Pcm(W/g) W10/10_ua W10/10_ua

W10/10_ua B4_phase(deg.) B10_Pc(W) B1_ua B1_ua

W10/50_Br/Bm W10/1000_Bm(T) B4_Br/Bm B1_Bm(T) B1_Bm(T)

B10_Pcm(W/g) B10_Pcm(W/g) B8_Pcm(W/g) B1_Br(T)
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According to the above paper [25], tree-based models

learned structured data with higher performance than

neural network-based models. Neural network-based

models are not optimized for learning non-smooth

patterns and are invariant to the rotation of each data

feature. In contrast, tree-based models treat each feature

separately, which is advantageous in low-information

datasets and is considered appropriate for the dataset used

in this paper. Thus, considering that the data used in this

study involve a relatively small sample size and require

the identification of nonlinear relationships, tree-based

models were found to be more suitable. This is also

supported by their superior performance, as presented in

Table 5. To summarize the results of the models, only

three tree-based models: TPOT, XGBoost, and RFR were

selected.

In the three tree-based models, the impact of each

feature on grain size was visually represented through

graphs using the dot plot, waterfall plot, force plot, and

dependence plot provided by the SHAP library. These

graphs highlight the factors that most significantly impact

the model's predictive decisions and illustrate the

relationships between each variable and the predicted

values.

Table 7. Rank of SHAP value.

TPOT XGBoost RFR GPR DNN

B4_Br/Bm B4_Br/Bm B10_Pcm(W/g) W1/10000_Bm(T) W5/2000_Bm(T)

W2/5000_Bm(T) B4_phase(deg.) B10_Pc(W) W2/5000_Bm(T) W2/5000_Bm(T)

W1/10000_Bm(T) B10_Pc(W) B4_phase(deg.) B4_Br/Bm W1/10000_Bm(T)

W10/50_Br/Bm B10_Pcm(W/g) B4_Br/Bm W10/10_ua W10/10_Pcm(W/g)

B4_phase(deg.) B1_phase(deg.) B8_Pcm(W/g) W10/10_Pc(W)

Fig. 9. (Color online) SHAP value dot plot (a) TPOT dot plot, (b) XGBoost dot plot, (c) RFR dot plot.
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Fig. 9 is a dot plot visualization of SHAP values. Red

dots indicate when the variable has a high value, and blue

dots indicate when the variable has a low value. The

horizontal position of a dot on the graph is the SHAP

value of that data point, which shows the magnitude and

direction of the variable's impact on the model's

predictions. A point to the right (positive value) indicates

that the variable has an effect that increases the model's

predicted value, while a point to the left (negative value)

indicates that the variable has an effect that decreases the

predicted value. From the TPOT and XGBoost SHAP dot

plots in Fig. 9(a) and Fig. 9(b), it is evident that B4_Br/

Bm is distributed with red dots at negative values, which

means that high values of B4_Br/Bm are associated with

negative SHAP values, while low values correspond to

positive SHAP values. The positive SHAP value means

that the low values of B4_Br/Bm contributed to the

increase in model predicted value, and B4_Br/Bm is

inversely related to grain size. According to previous

studies [26, 27], having a large grain size facilitates the

movement of the magnetic domain wall and the formation

of multiple magnetic domains, which improves the soft

magnetism characteristics of high permeability, low

coercive force, and low remanent flux, and these changes

Fig. 10. (Color online) SHAP value dependence plot between B4_Br/Bm and B10_Pcm(W/g) (a) TPOT dot plot, (b) XGBoost dot

plot, (c) RFR dot plot and B4_Br/Bm and B4_phase(deg.) (d) TPOT dot plot, (e) XGBoost dot plot, (f) RFR dot plot.
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may slightly increase the maximum flux density (Bm) but

not significantly [28], and significantly decrease the

remanent flux density (Br) and remanence ratio (Br/Bm)

[26]. The RFR dot plot in Fig. 9(c) shows that the

B10_Pcm(W/g) input variable has the largest SHAP value,

and the small values (blue dots) are distributed in the

positive SHAP value, which is inversely related to the

grain size. In addition, the relative difference in core loss

decreases with increasing frequency. The decrease in core

loss is 16-21% between 50 and 400 Hz and 4-8% for

frequencies above 1000 Hz. This increases the explanatory

ability of the model results by showing that the input

variables at 50 Hz, the frequency of B4 and B10, have a

stronger relationship with grain size, and that flux density

has a stronger relationship with grain size than core loss,

Remanence ratio (Br/Bm) and Core loss per mass (Pcm(W/

g)) have a stronger relationship with grain size, which is

supported by previous studies.

By comparing the PFI and SHAP values of the three

tree-based models in Tables 6 and 7, it was determined

that the highly ranked and frequently occurring input

variables contribute the most to grain size prediction, and

these key variables are identified as B4_Br/Bm, B4_phase

(deg.) and B10_Pcm(W/g). The SHAP Dependence Plot

shows the interaction of factors that affect prediction. It

plots the actual value of a variable and its corresponding

SHAP value on the x-axis and y-axis to show how the

variable affects the final prediction result. The colored

points compare the magnitude of the variable values and

provide a visual analysis of the SHAP dependence of the

important inputs in the model. Fig. 10 shows the

interaction of the three variables which have the highest

PFI and SHAP values in the three models. In Fig. 10(a),

(b), the variable B4_Br/Bm, changes the sign of SHAP

value based on the value of 0.63. The relationship with

variable B10_Pcm(W/g) shows that B10_Pcm(W/g) is

generally smaller (blue dots) when B4_Br/Bm < 0.75,

indicating that the two variables exhibits a proportional

relationship . In the RFR model in Fig. 10(c), the input

variable with the highest SHAP value is B10_Pcm(W/g) so

the x-axis and dot plot variables are switched. When the

value of B10_Pcm(W/g) is below 4.8, B4_Br/Bm also has

the same tendency as Fig. 10(a) and (b) in that the value

is small and most of the data is clustered. Br/Bm

represents the ratio of the remaining magnetic flux when

the external magnetic field is removed from the

magnetized state. It indicates the vertical height ratio of

the hysteresis loop, and a high Br/Bm means that even

when the magnetic field H becomes zero, a significant

amount of B remains. This implies a strong hysteresis

effect and difficulty in demagnetization. In this case, Pcm

refers to the total core loss, which includes hysteresis

loss, eddy current loss, and anomalous loss. A larger B-H

loop area means greater hysteresis loss, which makes it is

theoretically reasonable that Br/Bm and Pcm are in a

proportional relationship. In Fig. 10(d), (e), and (f), the

change of SHAP value of B4_Br/Bm and B10_Pcm, as

well as their relationship with B4_phase(deg.). First,

B4_Br/Bm, B4_phase and B10_Pcm are observed to be

inversely related. The phase difference is expressed as an

angle and is calculated as follows:

Phase Difference() = BH (5)

The phase difference is in the range 0° << 90°, where

B is the phase angle of the flux density B and H is the

phase angle of the magnetic field H. The presence of a

phase angle means that the flux density does not respond

immediately to changes in the magnetic field. The

presence of a phase angle means that flux density does

not respond instantaneously to changes in the magnetic

field. This delay is due to microscopic magnetic

interaction and energy loss mechanisms (hysteresis loss,

eddy current loss) inside the magnetic material. Hysteresis

loss is the energy loss caused by the rearrangement of the

magnetic domain not keeping up with the changes in the

magnetic field. Eddy current loss is the loss of energy due

to the fact that the eddy current induced by the change in

magnetic field generates an additional magnetic field,

which acts in opposition to the original magnetic field.

Both phenomena are related to the delay in flux density

and magnetic field. Br This directly leads to an increase in

Pcm because the wider the loop, the greater the energy

loss. Additionally, the relationship between the phase

difference () and the dissipated energy is observed [29].

(6)

Where Bm and Hm are the maximum values of each signal.

The loss energy w is proportional to Pcm, so eventually, as

 increases, sin increases, resulting in a larger loss

energy and Pcm. Ideally, in the absence of loss,  = 0 (B

and H are in-phase), whereas in the presence of loss, H

leads, B lags, and   . In general, in soft magnetism

materials, the phase difference is small on the order of a

few degrees (sec), but in high Si steel or nanocrystalline

alloys, research is being done to minimize  to a few° or

less by reducing losses [30]. Compared to Fig. 10(d), (e),

and (f), the relationship between Br/Bm and phase(deg.)

appears to be somewhat inconsistent with theoretical

expectations. This suggests that further research is needed.

Fig. 11 shows which magnetic conditions contain the

w =   HdB
BmHm

2
--------------sin
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highest and most explanatory variables by summing the

PFI and SHAP values from three tree-based models based

on magnetic criteria. In both Fig. 11(a) and (b), the plots

indicate that the magnetic properties measured at B1, B4,

and B10 show relatively high importance, accounting for

approximately 70% and 50% of the explanatory capability,

respectively. Furthermore, the consistently high importance

of magnetic properties at flux densities of 100, 400, and

1000 A/m for B1, B4, and B10 provides insight into the

effectiveness of measurements across a wide range of

conditions, excluding high flux density regions. These

findings suggest that grain size prediction may be

efficiently supported by magnetic measurements at three

flux density levels.

With the aim of improving the model’s applicability, the

relationship between the input variables in B1, B4, and

B10 and grain size was organized into a linear expression.

The regression coefficients were organized using the

linear regression model ElasticNet.

D = 10.05xB1_Bm + 7.11xB1_Br  3.13xB1_Hm + …
 9.23xB10_Br/Bm  7.5xB10_2phim (7)

The following formula is a linear regression equation

that predicts grain size using 11 magnetic properties

measured at B1, B4, and B10, for a total of 33 variables.

In the above equation, the input variables B4_Hm(A/m),

B10_phase(deg.) have a regression coefficient of 0. This

means that it has almost no significance, and it is also an

input variable that does not exist in Tables 6 and 7. The

R2 value of this linear model is 0.61, which is lower

compared to the performance of the previously developed

models. This indicates a limitation in predicting the

complex behavior of grain size using a linear equation.

As a result, using the same variables, three previously

selected tree-based models were applied to consider

nonlinear relationships through machine learning.

Table 8 compares the performance of the three models

for predicting grain size using 11 magnetic properties

measured in B1, B4, and B10, for a total of 33 variables.

The hyperparameter optimization for new input variables

is the same as the method used. The results show that the

RFR model is the most effective in predicting grain size.

Compared to Table 5, a decrease of approximately 0.09

and 0.14 in the R² values of TPOT and XGBoost,

respectively, was observed, along with an increase in

RMSE of up to 3.95. In contrast, the performance of the

RFR model was found to remain almost unchanged.

Regression tree finds the best split based on MSE (or

other impurity) at each node. Random forests, on the

other hand, have the structural property that at each split

during the learning process, they select the input variable

with the largest impurity reduction from a randomly

selected subset of features. Because of this property, even

though feature importance is not explicitly evaluated

during modeling, low-importance input variables are used

relatively little or ignored in the model and, as a result, do

not have a significant impact on model performance [19,

31]. In Table 6, which measures feature importance when

modeling with 165 input variables, the magnetic

properties of B4 and B10 are the highest, which explains

why almost the same input variables were rated as highly

important as the models created in Table 8, and the fact

Fig. 11. (Color online) Pie chart of the sum of the three models (TPOT, XGBoost, RFR) of (a) PFI value (b) SHAP value.

Table 8. Final model performance comparison.

TPOT XGBoost RFR

R2 0.66 0.65 0.74

RMSE 16.49 16.59 16.27
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that these input variables were used as the split criterion

explains why almost similar performance was obtained.

Using the RFR model, Fig. 12 presents a comparison

between the actual grain size measured at 1000 °C and the

grain size predicted by the model. The actual grain size

exhibits a trend similar to the predicted values. The

average residual between the actual and predicted values

is 13.07 m. Notably, the grain size begins to increase

after a heat treatment time of 44 minutes, indicating the

occurrence of recrystallization and grain growth phenomena.

At this condition, the RFR model showed its largest

prediction error of 34.05 m. This appears to be due to

the limited amount of data available for grain sizes

exhibiting such phenomena, resulting in lower predictive

capability. Excluding the grain size error at 44 minutes,

the average error for the remaining data is 10.8 m,

suggesting that additional data collection in this range

may improve model performance. In addition, the model

was developed using magnetic data under three flux

density conditions: 100, 400, and 1000 A/m. This suggests

that measuring additional magnetic data between 100 and

1000 A/m such as data at 800 A/m, may lead to a model

with improved predictive performance. Although creating

a model to predict grain size using various magnetic

properties data after measuring magnetic properties

multiple times may have a higher prediction accuracy, in

order to increase the utilization of the model and reduce

the prediction cost, a model was created to predict grain

size using magnetic properties data measured at B1, B4,

and B10, the three most important magnetic measurement

fix parameters selected in Fig. 11.

4. Conclusions

In this study aimed to non-destructively predict the

grain size of non-oriented electrical steel by analyzing the

complex relationships between various magnetic properties

and grain size using machine learning. To address the

black-box problem of the models, XAI techniques such as

PFI and SHAP were applied. Among the five models

(TPOT, XGBoost, RFR, DNN, and GPR), the XGBoost

model showed the highest performance with an R2 of

0.79 and RMSE of 12.64. Overall, the tree-based models

(TPOT, XGBoost, RFR) outperformed the neural network-

based models (DNN, GPR) in terms of both R2 and

RMSE. Based on the characteristics of the data, which

required learning non-smooth patterns, the three tree-

based models were selected for PFI and SHAP analysis.

In all three models, the most influential input variables

were magnetic properties measured at low-frequency flux

densities, such as B4_Br/Bm, B4_phase(deg.) and

B10_Pcm(W/g). Through SHAP dot plots and dependence

plots, the influence of these variables, their relationship

with grain size, and their interactions were analyzed, and

the results coincide with magnetic theories. By summing

the PFI and SHAP values of the three models, it was

confirmed that the variables under the magnetic conditions

B1, B4, and B10 accounted for about 70% of the model

explanation ratio. Using 33 magnetic properties measured

under these three conditions, the RFR model achieved a

performance of R2 = 0.74 and RMSE = 16.27. When

comparing the predicted grain size with experimental

values under the 1000 ℃ heat treatment condition, an

average error of 13.07 m was observed. Through this

study, it was demonstrated that grain size could be

effectively predicted with only three magnetic measurements,

improving practical applicability. This suggests that grain

size is measurable and controllable in real time during

continuous electrical steel production. 
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