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Measuring the grain size of electrical steel is important for understanding its properties, but until now studies
have attempted this using experimental equations or machine learning (ML), resulting in limited models. This
study applied three ML and Explainable-Al (XAI) to analyze magnetic properties and identify key the factors
most relevant to grain size prediction. Among the three tree-based models, B4 Br/Bm, B10_P,,, were identified
as key variables. It was also found that variables under B1, B4, B10 conditions accounted for 60% of the model
explanation ratio. Final model was constructed using these variables. These findings demonstrate the potential
of ML with XAI to predict grain size with fewer magnetic measurement.
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1. Introduction

Evaluation of Grain size is important in the steel
manufacturing process. This is because grain size affects
not only mechanical properties such as strength and
ductility, but also several properties such as corrosion and
magnetic properties, weldability, electrical performance,
etc. This is well illustrated by the several relative equation,
for instance Hall-Petch equation and the Magnetic Core
Loss equation, etc.

In electrical steel used as the core material for motors
and transformers, controlling grain size is essential, as it
significantly affects both mechanical and magnetic
properties. In the electrical steel manufacturing process,
grain size is regularly measured to evaluate the quality of
steel sheets. Also, it has been noted that rolling technology
is limited to producing a 0.2 mm thick electrical steel
sheet with a thickness of 0.1 mm or less in a single
process, because when Si is high, a problem occurs in
which it is difficult to lower the pressure reduction rate.
Many studies aim that thinner sheet results in better
magnetic properties of the sheet metal, i.e. lower losses.
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so two rolling processes have studied [1-3]. As mentioned
earlier in this study, since grain size has a great influence
on the magnetic properties of the steel plate, it is
necessary to study and evaluate the specimen by securing
the thickness of 0.1 mm through two rolling processes in
our paper.

In continuous electrical steel production, real-time grain
size control is important to ensure uniform material
properties. Magnetic measurement, which only requires
the application of a magnetic field, has been widely
explored as a non-destructive alternative for grain size
evaluation [4-10]. With research in this field still in its
early stages since the late 1990s, research has been
conducted to find linear relationships and regression
equations between magnetic properties of materials and
grain size [4]. Some research, attempts have been made to
quantify the relationship between magnetic properties
such as core loss, permeability, and flux density and grain
size [5, 6].

However, the challenge lies in the microscopy method's
limitation to only a few millimeter-sized specimens,
which does not reflect the average grain size of larger
areas. Also, grain size is commonly measured for long
time using optical microscopy, which involves mounting,
polishing, and etching the samples. Thus this makes the
rapid measurement of large areas a significant challenge.
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This difficulty is compounded by variability, such as grain
size alterations resulting from unexpected equipment
changes, which often lead to deviations from the desired
material specifications and lead to defects. It is difficult to
determine, which conditions are related to the grain size,
the interaction of various variables because there are AC
measurements of the magnetic field, and in the case of
AC, the conditions for applying the magnetic field from
low frequency to high frequency ranging from hundreds
to hundreds of thousands of Hz. In addition, the resulting
values from each hysteresis loop provide many factors.
AC various in frequency (Hz), and the parameters obtained
from the hysteresis loop (coercivity, iron loss, flux
density, etc.) are all potential factors. This results in over
100 variables to consider, as measuring just 10 frequencies
typically made more than 10 derived parameters per
frequency.

So, a solution to this challenge has been necessary.
Quantitative analysis techniques have been developed
until now. For example, since the early 2000s, research on
predicting grain size using machine learning techniques
such as Feed Forward Neural Networks (FFNN) has been
actively tried. Recent grain size prediction have studied to
incorporate not only magnetic properties but also various
non-destructive testing data, such as ultrasonic and coda
waves [7-10].

In continuous electrical steel production magnetic
measurement is considered to be the most advantageous
approach for enabling real-time grain size control, although
various methods have been explored. To overcome this
limitation, Explainable Artificial Intelligence (XAI) techniques
such as Permutation Feature Importance (PFI) and Shapley
Additive Explanations (SHAP) were introduced to
identify the key magnetic properties contributing to grain
size. These techniques are effective to offer insight into
the influence and importance of each variable, these have
been used in drug discovery and manufacturing and have
been shown to be effective [11-13]. Also, studies were
tried to predict the grain size of low carbon steel with a
Bayesian ANN model by evaluating the importance of
input variables through Reversible Jump Markov Chain
Monte Carlo (RIMCMC) [14], and to evaluate the
importance of variables in a model using SHAP analysis
to influence the growth behavior of austenite grains in a
reheating process [15].

To address this challenge, we have studied to solve the
problem by using PFI and SHAP analysis, which are XAl
techniques based on machine learning and deep learning
to address the black box problem and improve model
interpretability. Provided that the important factors are
identified, an indirect method for measuring grain size
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may be established, offering significant potential for
efficient grain size evaluation in the continuous production
of metallic materials such as steel. Although the reasoning
behind Al-driven variable selection may be difficult to
interpret, this approach could significantly reduce the
defect rate in manufactured materials and contribute to a
non-destructive grain size measurement process.

2. Design Framework and
Experimental Procedure

Fig. 1 shows the flowchart of the entire process of
training and optimizing the model, identifying highly
descriptive input variables through XAI, and as a final
step, formulating the relationship expression with grain
size. The training and test datasets were randomly divided
in a 70:30 ratio using scikit-learn's train-test-split, and the
random seed was fixed to ensure reproducibility. As a
result, a DataFrame with 165 input variables and approxi-
mately 100 rows was used for training and testing. To
impute missing values in the input variables, Simple-
Imputer, Iterativelmputer, and KNNImputer from scikit-
learn were applied, and their performance was evaluated
using Mean Squared Error (MSE) with the Random-
ForestRegressor (RFR) model. The DataFrame imputed
by Iterativelmputer showed the lowest MSE (Table 1),
and was consequently selected for preprocessing. To
enhance its performance, a LightGBM-based version of

DataSets

I

Pre-Processing
Missing value handling and
scaling

I

5 Model Optimized
TPOT, XGBoost, RFR, GPR, DNN
model train & test, optimized

l

Model Selection SHAP value
l—— best performance and optimized —|  Deriving influential input
for DataFrame variables

Permutation Feature
Importance

Derivation
Expression

Fig. 1. (Color online) Simulation process flow chart.

Table 1. MSE comparison of Different Imputation Methods.

Model MSE
Iterativelmputer 284.17
KNNImputer 298.85
SimpleIlmputer 287.08
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the Iterativelmputer was employed, leveraging correlations
among variables in an iterative manner. After imputation,
MinMaxScaler was applied to normalize all feature values
between 0 and 1, improving model training efficiency.

Five models were trained: eXtreme Gradient Boosting
(XGBoost) [16], Deep Neural Networks (DNN) [17],
Tree Based Pipeline Optimization Tool (TPOT) [18],
Random Forest Regressor (RFR) [19], Gaussian Process
Regressor (GPR) [20] The TPOT model, which is part of
the AutoML package, is one of the models utilized in
many machine learning studies, and the other four models
are already used in many research fields that are related to
materials science and engineering theory. These five
models were subjected to hyperparameter optimization.
XGBoost and RFR models were tuning using Ran-
domizedSearchCV. DNN model was optimized using
Adam and MSE loss function, with early stopping and
cross-validation applied to prevent overfitting and evaluate
performance via RMSE and R2. GPR model was optimized
using Bayesian methods with Skopt’s gp_minimize, tuning
the RBF kernel’s length scale and noise level (alpha).
TPOT, an AutoML tool, applied genetic programming to
build and optimize pipelines consisting of feature engi-
neering, hyperparameter tuning, and model evaluation. As
the data were preprocessed beforehand, preprocessing
operators were excluded by customizing the config_dict.
The R-Squared (R2) and Root Mean Square Error
(RMSE) values of the five models were compared to
selecting the best performing models and the three
models optimized for DataFrame.

Following this, to increase the explanatory ability of the
model, SHAP and PFI were used as XAI techniques.
SHAP uses the Shapley value for each input variable to
determine the SHAP value of the variable.

SIN(IF =S -1
Q= ESQF%(VSU{Z}(XSU{U) —vs(xs)) (1)

@; is the Shapley value of a particular input variable
value, S is the set of input variables excluding a particular
variable, F is the set of input variables including a
particular variable, |S|, |[F| are the sizes of the sets, and vg
is the predicted value of the machine learning model.
These Shapley values help illustrate how a model predicts
outcomes based on linear combinations of input features
[15]. PFI is a method for evaluating how important a
particular feature is to the performance of a prediction
model [21]. This method measures the importance of each
input variable by training a model and then randomly
shuffling the values of certain features in the dataset and
observing the effect on the model's performance.
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The permutation importance PFI; represents the impact of
the ith variable, calculated as the difference between the
model performance without shuffling (rs) and the average
performance after shuffling the variable J times. This
reflects the extent to which model performance degrades
when that variable is altered. By applying XAl techniques,
the black box nature of the models was addressed, and
explanatory capability was improved by identifying key
magnetic properties contributing most to grain size pre-
diction and interpreting them through materials science.
The library versions used for machine learning and
optimization are scikit-learn 1.6.1 [22], SHAP 0.46.0
[11], and Python version 3.12.7. As a final step, the
magnetic condition with the highest combined PFI and
SHAP values was selected, a linear regression equation
was derived using the corresponding input variables
through ElasticNet, and modeling was performed using
RFR.

In the experiments in this paper, a commercial specimen
of 0.5 mm NO electrical steel was rolled to 0.1 mm. The
SH-FU-80LTG instrument was used for heat treatment as
shown in Table 2. Heat treatment was conducted under
vacuum conditions (~10*torr). The specimens were
inserted into a furnace that had been preheated to the
target temperature, enabling rapid heating and allowing
the specimens to reach the desired temperature within a
short time. Since the specimens used in this study were
very thin (0.1 mm), experimental measurements showed
that they reached the target temperature within 2-3
minutes, corresponding to a heating rate of over 500°C/
min. The annealing time was defined as the duration after
the specimen had reached the target temperature, and the
heating period required to reach this temperature was
excluded accordingly. After annealing, the specimens
were air-cooled under vacuum conditions. The main
elements are Si 0.6 wt% and Al 0.3 wt% by X-Ray
Fluorescence Spectrometer (XRF). The instrument used
for the analysis was an XRF from Rigaku (Rigaku/ZSX-
Primus V). The flux density, frequency, and notation are
summarized in Table 3. The flux density is expressed in B

Table 2. Experimental conditions for heat treatment: time,
temperature and vacuum level.

Anneali .
calng Time Temperature Vacuum level
parameters
values 0.2-44 min 800-1100 °C 5% 107 torr




Journal of Magnetics, Vol. 30, No. 3, September 2025

Ll (il
10 20 30 40
e

Fig. 2. (Color online) The size of the specimen used for mag-
netic measurements is 40 x 10 mm, and its thickness is 0.1
mm.

[Tesla] and the core loss is expressed in W [Watt/kg].
These fix parameters were chosen because they are
frequently used in recent electrical steel performance
studies. Several magnetic field conditions and low
frequency 50 Hz to high frequency 20 kHz were set to
reproduce the magnetic situation that is commonly
encountered in actual motors and transformers. All
measurements were tested using a single sheet tester
(SST) to evaluate AC magnetic properties by various
frequencies. The analysis was based on magnetic data
obtained from hysteresis loops corresponding to different
frequencies and magnetic field conditions. These
measurement conditions are summarized in Table 4. At a
given flux density and frequency condition, the following
data are obtainable: B,(T), BAT), H,(A/m), HJ(A/m),
P.(W), P.(kWim®), P,(WIg), ., BriBm, 2¢,(Wb),
phase(deg.). About 100 specimens were heat treated, and
in the case of where the dependent variable grain size row
was missing, the missing rows were processed using
dropna. After preprocessing the missing data, a Data-
Frame containing 165 input variables was then used for
training and validation. The relationship between magnetic
and electrical steel performance for the less commonly
used magnetic properties: P, Pey, ta 20, phase(deg.).

Table 4. Explain magnetic properties.
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Table 3. Fixed parameters (Flux Density, Frequency) for mea-
suring magnetic properties.

fix param  fix value fix unit freq (kHz) Notation
Hm 100 A/m 0.05 Bl
Hm 400 A/m 0.05 B4
Hm 800 A/m 0.05 B8
Hm 1000 A/m 0.05 B10
Hm 2500 A/m 0.05 B25
Bm 50 mT 20 W0.5/20000
Bm 100 mT 10 W1/10000
Bm 200 mT 5 W2/5000
Bm 500 mT ‘W5/2000
Bm 1000 mT 1 W10/1000
Bm 1000 mT 0.8 W10/800
Bm 1000 mT 0.4 W10/400
Bm 1000 mT 0.1 'W10/100
Bm 1000 mT 0.05 W10/50
Bm 1000 mT 0.01 W10/10

is summarized in Table 4.

A total of 11 magnetic properties were measured using
IWATSU's SY-8219 model, a single sheet tester and 0.1
mm thick electrical steel sheets were used. Since the
specimen size for magnetic measurements is > 40 mm x
10 mm, the specimen was sized as shown in Fig. 2, the
specimens were tested to size. Based on these data, a
model was built to predict the grain size from the
magnetic properties of the steel sheet.

Prior to the heat treatment and grain size measurement
experiments, a phase field-based Finite Volume PDE
Solver Using Python (FiPy) simulation [23] was conducted
to identify grain growth tendencies under different heat

Properties Related by electrical steel Key determinants

P.(kWint) related to the efficiency of the transformer and motor core, lower  Steel sheet density, wt% Si, insulation coating,
(Core Loss per Volume)  losses increase efficiency and reduce heat generation thickness

P..(Wig) High power density motors and transformers require consider- Density, silicon content, insulating properties
(Core Loss per Mass) ation of lightweight core design

Ha High permeability allows easy magnetic field transmission, Grain size, crystal structure (Goss Texture), cold
(Absolute Permeability)  enhancing transformers and motor core performance. working, and heat treatment.

Br/Bm High values indicate greater hysteresis loss; reducing this is cru- ~ Texture, grain size, cold working.

(Remanence Ratio) cial in low-loss steel sheets.

2¢,(Wb) Used to analyze the magnetic properties of the core in transform- Magnetic field strength, core shape, frequency.
(Double Maximum Mag- ers.

netic Flux)

phase(deg.) High phase difference indicates significant energy loss, whichis ~ Magnetic resistance, hysteresis properties, fre-

(Phase Difference) more affected as frequency increases.

quency.
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treatment conditions and to optimize the heat treatment
parameters for improved experimental efficiency. The
Phase Field model is a computational framework that
models microstructural changes inside a material using a
continuous phase variable (@) to predict the growth
behavior of complex microstructures over time. FiPy is a
Python-based software that enables thermodynamically
based simulations using the finite volume method [23].

F= .[ [fbulk(¢) +f:gradient(¢)]dV (3)

The free energy density function, F, represents the
thermodynamic stability of ¢ driven by the simulation.
Jou(@) drives the system to converge to a phase with
lower energy, Interface energy term, and the interface
energy term, fy..qind(@) Tepresents the spatial variation of
the interface at the phase boundary. These two terms are
used to predict how the microstructure of a material
changes under specific conditions using the above
equation.

H— & ) @

The Allen-Cahn equation is used to model phase
transformations and the movement of phase boundaries
by tracking changes in the state variable over time [24].
In this model, & controls interfacial energy, and Au),
derived from potential energy, drives the system toward
stability. The simulation is applied to predict grain growth
and the resulting grain size distribution under various heat
treatment conditions. The FiPy library used for the
simulations was version 3.4.5.

To measure the grain size of the specimen, the
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specimen was polished by electropolishing followed by
etching with nital solution. The electrolyte for electro-
polishing, a mixture of glacial acetic acid (99.5%) and
perchloric acid (60.0%) in a 3:1 ratio, was used. Electro-
polishing was employed using a BUEHLER ElectroMet4
device. The specimen was then etched in a 5% dilution of
nitric acid in ethanol (nital solution) for 90 seconds. All
processes were performed at room temperature (23 £2 °C).
The microstructure was observed at 100x magnification
using an optical microscope, and average grain size was
determined from nine randomly selected areas per
specimen using the linear intercept method in accordance
with ASTM E112.

3. Results and Discussion

Fig. 3 shows the grain growth simulation results using
FiPy at 800 °C, 950°C, and 1100 °C according to heat
treatment time. In Fig. 3(a), the heat treatment condition
involves heating from room temperature (25 °C) to each
target temperature over 10 seconds, followed by holding
at that temperature for 240 seconds. Cooling is then
carried out back to room temperature over a period of 60
seconds. The simulated average grain sizes at each
temperature were 25.01 gm, 46.62 ym, and 83.25 um,
respectively. As shown in Fig. 3(b), when compared with
the experimental results, the largest difference was
observed at 1100 °C, with a deviation of 6.1 xm.

Fig. 4 shows the grain size measurements extracted
from the total heat treatment conditions specifically at 1,
2,3,4,6,8, 12, 16, and 20 minutes for each temperature.
At 1100 °C, heat treatment was performed only for 1, 2,
and 3 minutes. The grain size showed a gradual increase
as the temperature increased from 800°C to 1100 °C.

Simulated Actual
100 -~ 100
800_4 25.01 25.14
97 9003 4115 4305 = 1% g
™ -
80 4 950_6 46.62 47.05 d80 o©
g N
> 1050_6 56.1 6151 2
g 701 170 &
‘® 11003 83.25 89.35 o
c u
‘® 601 {60 &
e a ®
] §
3 501 5 1s0 2
1 - 8
< H ®
40 140 5
5
30 ®  Actual grain size {30 @
w ®  Simulate average grain size
20 T T T T T 20
800_4 900_3 950_6 1050_6 1100_3

Heat treatment (temp_time)

Fig. 3. (Color online) Results of the grain growth simulation using FiPy (a) at 800 °C, 950 °C, 1100 °C, (b) comparison between

experimental values and simulation results.
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Fig. 4. (Color online) Optical micrographs of cold rolled spec-
imens after annealing at (a) 800 °C, (b) 850 °C, (c) 900 °C, (d)
950 °C, (e) 1000 °C, (f) 1050 °C, (g) 1100 °C.

Grain size was observed using an optical microscope, as
shown in Fig. 5. At temperatures above 1050 °C, grain
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growth and recrystallized phenomena leading to irregular
and large grain boundaries are observed. The heat
treatment conditions at each temperature were set based
on the FiPy simulation results, which allowed us to
produce specimens with different grain sizes.

The final pipeline for the TPOT model is shown in Fig.
6 as a flowchart. This pipeline is a regression model with
stacking. The first pipeline cross-validated the Ridge
regression, and the second and third pipelines used the
ExtraTreesRegressor regression model. This model is like
RandomForest but differs in that it randomizes the
selection of features and split points during tree gene-
ration. This has the advantage of helping to reduce the
variance of the model, which prevents overfitting. The
final pipeline uses the Elastic Net model, which uses L1
regularization to simultaneously control feature selection
and regularization in regression. The hyperparameters in
each model were optimized using AutoML. Subsequently,
the hyperparameters in each model were optimized using
different techniques: RandomizedSearchCV for the RFR
and XGBoost models, Bayesian optimization for the GPR
model, and the Adam optimizer with the MSE loss

850°C - 4min 950°C - 6min
1000°C - 4min 1050°C - 6min 1100°C - 3min
Fig. 5. Measuring grain size based on heat treatment temperature and time.
Stackingestimator-1 Stackingestimator-2 Stackingestimator-3 ElasticnetCV
ExtraTreesRegressor ExtraTreesRegressor ElasticNetCV
max_features=0.65 bootstrap=True 11_ratio=0.2
) min_samples_leaf=4 max_features=0.1 tol=0.01
RidgeCV min_samples_split=11 min_samples_leaf=10
min_samples_split=5

\/

\_/’

Fig. 6. (Color online) Optimized TPOT pipeline.

\/’
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Table 5. Model performance comparison.

TPOT XGBoost  RFR GPR DNN
R2 0.75 0.79 0.74 0.71 0.73
RMSE  14.63 12.64 16.4 17.19 13.1

function for the DNN model.

Table 5 compares the R2 and RMSE values of the
models. After modeling and optimization, the best
performing model is XGBoost, which has the highest R2
(=0.79) and the lowest RMSE (=12.64). GPR recorded
the lowest R2 (=0.71) and the highest RMSE (=17.19).
This may be because GPR is vulnerable to noise or
complex interactions among high-dimensional variables,

(a) Top 10 Feature Importance (Permutation)
B4_Br/Bm
wi/20000_gon(m)
w1o710_ve [
wio/s0_srem |
510_pem(wro) [
w1o710_tm(avm) [
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s1_sm(T) [
88_Br/Bm |
Bl_ua{
0 0.01 0.02 0.03
Mean Importance
(C) Top 10 Feature Importance (Permutation)
B4_phase(deg.)
B10_Pcm(W/g)
B10_Pc(W)
B4_Br/Bm
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W10/10_Hm(A/m)
B1_2phim(Wb)
B1_Pcm(W/g)
B4_Pc(W)
0 0.02 0.04 0.06
Mean Importance
(e) Top 10 Feature Importance (Permutation)
W1/10000_Bm(T)
W10/10_ua
Bl_ua
B1_Bm(T)
B1_Br(T)
B1_2phim(Wb)
B4_Br/Bm
B1_Pcv(kW/m3)
B10_Hm(A/m){
W1/10000_phase(deg.)

0 0.02 0.04 0.06
Mean Importance

and the amount of data may not have been sufficient.
When comparing the results of tree-based models (TPOT,
XGBoost, RFR), the average R2 value was 0.76 and the
average RMSE was 14.56. In contrast, the neural
network-based models (GPR, DNN) showed relatively
lower performance, with an average R2 of 0.72 and
RMSE of 15.15.

The input variables selected for the PFI of each model
were compared and analyzed to assess whether the model
predictions could be explained based on material properties.
A higher PFI value indicates a greater contribution of the
variable to the model's performance. In addition, the
SHAP values of each model were compared and analyzed
to understand the explanatory capability of the models

(b Top 10 Feature Importance (Permutation)
B4_Br/Bm
B1_phase(deg.)
B4_phase(deg.)
W10/1000_Bm(T)
B10_Pcm(W/g)
B4_Hc(A/m)
B10_Pc(W)
W5/2000_Bm(T)
B1_Br(T)
W10/400_Bm(T)
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Mean Importance

(d)
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Fig. 7. (Color online) PFI bar plot of each model (a) TPOT, (b) XGBoost, (c) RFR, (d) GPR, (e) DNN.



Journal of Magnetics, Vol. 30, No. 3, September 2025

@ oo —
W2/5000_5m(T) [
W1/10000_8m(T) [
Wi0/50_6r/om
84_phase(des.) |G
W10/100_Br/Bm _
W10/50_Br(T) |
W10/10_Hm(A/m)
810_Po(\) |
88_Hm(A/m) |

0.0 0.5 20

1.0 1.5
mean(|SHAP value|)

(© 84_Br/Bm .
84_phase(deg.) |
B4_p(w) |
88_Pem(W/e)
810_Pm(W/e) |
B4_Pcm(w/g) [N
wz2/5000_8m(T) [
W10/50_Br/Bm |
W10/1000_Bm(T) [N
W5/2000_Bm(T) |

0.0 05 1.0 15 2.0 25 3.0 35
mean(|SHAP value|)

(e)WS/zooo_Bm(T) |

W1/10000_6mi() |
w10/10_Pem(w/e) |
W10/400_phase(deg.) _
w2/5000_sm(7) |
wio/10_pe(w)
w10/10_pev(kw/m3) [N
W10/1000_phase(deg.) S
W10/800_phase(deg.) [N
Bl_uva

0.0 0.2 0.4 0.6 0.8 1.0
mean(|SHAP value|)

-367 -

(b)
g4_sr/em -
B4_phase(deg.) [N
510_pc(w) |
10_pem(w/c) |
B1_phase(cec.) I
84_Hc(a/m) |
W10/1000_Bm(T) [
ws/2000_Bm(T) |
B4_Pcv(kw/m3) [
W0.5/20000_Bm(T)

0 1 2 3 4 5
mean(|SHAP value|)

(d)
w1/10000_Bm(T) [
w2/5000_Bm(T) [N
w2/5000_8m(T) I
wio/10_va [
81_2phim(wb) I
1_br(T) [
81_8m(T) [
88_Hm(a/m)
wio/100_8r/sm [N
w10/50_Bm(T) [N

0.0 0.2 0.4 0.6 0.8 1.0
mean(|SHAP value|)

Fig. 8. (Color online) [SHAP| value bar plot of each model (a) TPOT, (b) XGBoost, (c) RFR, (d) GPR, (¢) DNN.

and the relationship between each variable and grain size.
The SHAP value of each variable indicates the importance
of that variable to the model output. Fig. 7 shows the bar
plot of the top 10 PFI values of each model, and Fig. 8
shows the input variables with the top 10 mean absolute
SHAP values of each model.

Tables 6 and 7 present the results ranked after at least

Table 6. Rank of PFI value.

10 iterations, summarizing the top five features in
descending order of importance. In the tree-based model,
the influence of magnetic property features measured at
low frequency flux density such as B4 Br/Bm, B4 phase
(deg.), B10_P.,(WI/g) is high. But, in the neural network-
based models, features measured at specific core losses
such as W1/10000_B,(T), W10/10_, were more influential.

TPOT XGBoost RFR GPR DNN
B4 Br/Bm B4 Br/Bm B4 phase(deg.) W1/10000_ Bm(T) W1/10000_ Bm(T)
W1/10000 Bm(T) B1 phase(deg.) B10_Pcm(W/g) W10/10_uva W10/10_ua
W10/10_ua B4 phase(deg.) B10_Pc(W) Bl ua Bl ua
W10/50_Br/Bm W10/1000_Bm(T) B4 Br/Bm B1_Bm(T) B1 Bm(T)
B10_Pcm(W/g) B10_Pcm(W/g) B8 Pcm(W/g) B1 Br(T)
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Table 7. Rank of SHAP value.
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TPOT XGBoost RFR GPR DNN
B4 Br/Bm B4 Br/Bm B10_Pem(W/g) W1/10000_Bm(T) W5/2000 Bm(T)
W2/5000_Bm(T) B4 phase(deg.) B10_Pc(W) W2/5000 Bm(T) W2/5000_Bm(T)
W1/10000 Bm(T) B10_Pc(W) B4 phase(deg.) B4 Br/Bm W1/10000 Bm(T)
W10/50_Br/Bm B10 Pcm(W/g) B4 Br/Bm W10/10_ua W10/10_Pem(W/g)
B4 phase(deg.) B1_phase(deg.) B8 Pcm(W/g) W10/10_Pc(W)

According to the above paper [25], tree-based models
learned structured data with higher performance than
neural network-based models. Neural network-based
models are not optimized for learning non-smooth
patterns and are invariant to the rotation of each data
feature. In contrast, tree-based models treat each feature
separately, which is advantageous in low-information
datasets and is considered appropriate for the dataset used
in this paper. Thus, considering that the data used in this
study involve a relatively small sample size and require
the identification of nonlinear relationships, tree-based
models were found to be more suitable. This is also

(a)

B4_Br/Bm o0 Bidl 0t o ot e S
W2/5000_Bm(T) PSR N P PR
W1/10000_Bm(T) R R L I

W10/50_Br/Bm
B4_phase(deg.)
W10/100_Br/Bm
W10/50_Br(T) e R
W10/10_Hm(A/m) .
B10_Pc(W) PRE SRN | e

B8_Hm(A/m) o o o ole el oo
B10_Pcm(W/g) ¥
W10/50_ua

Feature value

Low

4 -3 -2 -1 0 1 2 3 4
SHAP value

()
B10_Pcm(W/g) = = - wil-se
B10_Pc(W) = PR

B4_phase(deg.) . emee
B4_Br/Bm S — =
B8_Pcm(W/g) Bskisge g
B8_Pc(W) oo = .
B4_Pc(W) ) S
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B25_Hm(A/m) wled esene
W10/10_Hm(A/m) g4 . ...

Feature value

Low
-6 6 8

-2 0 2
SHAP value

High

High

supported by their superior performance, as presented in
Table 5. To summarize the results of the models, only
three tree-based models: TPOT, XGBoost, and RFR were
selected.

In the three tree-based models, the impact of each
feature on grain size was visually represented through
graphs using the dot plot, waterfall plot, force plot, and
dependence plot provided by the SHAP library. These
graphs highlight the factors that most significantly impact
the model's predictive decisions and illustrate the
relationships between each variable and the predicted
values.

(b) High
B4_Br/Bm Seke o =
B4_phase(deg.)
B10_Pc(W) - t SETSS
B10_Pcm(W/g) =& o . B
B1l_phase(deg.) =+ ecw- ss% .
B4_Hc(A/m) ES
W10/1000_Bm(T)
W5/2000_Bm(T) TSN B
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W0.5/20000_Bm(T) sisi
W2/5000_Bm(T) s -
B10_Hm(A/m) ] d

'

oL

3

'

1
Feature value

Low

SHAP value

Fig. 9. (Color online) SHAP value dot plot (a) TPOT dot plot, (b) XGBoost dot plot, (c) RFR dot plot.
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Fig. 9 is a dot plot visualization of SHAP values. Red
dots indicate when the variable has a high value, and blue
dots indicate when the variable has a low value. The
horizontal position of a dot on the graph is the SHAP
value of that data point, which shows the magnitude and
direction of the variable's impact on the model's
predictions. A point to the right (positive value) indicates
that the variable has an effect that increases the model's
predicted value, while a point to the left (negative value)
indicates that the variable has an effect that decreases the
predicted value. From the TPOT and XGBoost SHAP dot
plots in Fig. 9(a) and Fig. 9(b), it is evident that B4 Br/
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Bm is distributed with red dots at negative values, which
means that high values of B4 Br/Bm are associated with
negative SHAP values, while low values correspond to
positive SHAP values. The positive SHAP value means
that the low values of B4 Br/Bm contributed to the
increase in model predicted value, and B4 Br/Bm is
inversely related to grain size. According to previous
studies [26, 27], having a large grain size facilitates the
movement of the magnetic domain wall and the formation
of multiple magnetic domains, which improves the soft
magnetism characteristics of high permeability, low
coercive force, and low remanent flux, and these changes
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Fig. 10. (Color online) SHAP value dependence plot between B4 Br/Bm and B10_Pcm(W/g) (a) TPOT dot plot, (b) XGBoost dot
plot, (c) RFR dot plot and B4 Br/Bm and B4 phase(deg.) (d) TPOT dot plot, (¢) XGBoost dot plot, (f) RFR dot plot.
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may slightly increase the maximum flux density (B,,) but
not significantly [28], and significantly decrease the
remanent flux density (B,) and remanence ratio (Br/Bm)
[26]. The RFR dot plot in Fig. 9(c) shows that the
B10 _P,.,(W/g) input variable has the largest SHAP value,
and the small values (blue dots) are distributed in the
positive SHAP value, which is inversely related to the
grain size. In addition, the relative difference in core loss
decreases with increasing frequency. The decrease in core
loss is 16-21% between 50 and 400 Hz and 4-8% for
frequencies above 1000 Hz. This increases the explanatory
ability of the model results by showing that the input
variables at 50 Hz, the frequency of B4 and B10, have a
stronger relationship with grain size, and that flux density
has a stronger relationship with grain size than core loss,
Remanence ratio (Br/Bm) and Core loss per mass (P,,(W/
2)) have a stronger relationship with grain size, which is
supported by previous studies.

By comparing the PFI and SHAP values of the three
tree-based models in Tables 6 and 7, it was determined
that the highly ranked and frequently occurring input
variables contribute the most to grain size prediction, and
these key variables are identified as B4 Br/Bm, B4 phase
(deg.) and B10_P.,(W/g). The SHAP Dependence Plot
shows the interaction of factors that affect prediction. It
plots the actual value of a variable and its corresponding
SHAP value on the x-axis and y-axis to show how the
variable affects the final prediction result. The colored
points compare the magnitude of the variable values and
provide a visual analysis of the SHAP dependence of the
important inputs in the model. Fig. 10 shows the
interaction of the three variables which have the highest
PFI and SHAP values in the three models. In Fig. 10(a),
(b), the variable B4 Br/Bm, changes the sign of SHAP
value based on the value of 0.63. The relationship with
variable B10_P.,(W/g) shows that B10 P..(W/g) is
generally smaller (blue dots) when B4 Br/Bm < 0.75,
indicating that the two variables exhibits a proportional
relationship . In the RFR model in Fig. 10(c), the input
variable with the highest SHAP value is B10_P,,(W/g) so
the x-axis and dot plot variables are switched. When the
value of B10_P.,(W/g) is below 4.8, B4 Br/Bm also has
the same tendency as Fig. 10(a) and (b) in that the value
is small and most of the data is clustered. Br/Bm
represents the ratio of the remaining magnetic flux when
the external magnetic field is removed from the
magnetized state. It indicates the vertical height ratio of
the hysteresis loop, and a high Br/Bm means that even
when the magnetic field H becomes zero, a significant
amount of B remains. This implies a strong hysteresis
effect and difficulty in demagnetization. In this case, P,
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refers to the total core loss, which includes hysteresis
loss, eddy current loss, and anomalous loss. A larger B-H
loop area means greater hysteresis loss, which makes it is
theoretically reasonable that Br/Bm and P, are in a
proportional relationship. In Fig. 10(d), (e), and (f), the
change of SHAP value of B4 Br/Bm and B10 P, as
well as their relationship with B4 phase(deg.). First,
B4 Br/Bm, B4 phase and B10_P,, are observed to be
inversely related. The phase difference is expressed as an
angle and is calculated as follows:

Phase Difference(¢) = ¢p — ¢u 5)

The phase difference is in the range 0° < ¢ < 90°, where
@s is the phase angle of the flux density B and @y is the
phase angle of the magnetic field H. The presence of a
phase angle means that the flux density does not respond
immediately to changes in the magnetic field. The
presence of a phase angle means that flux density does
not respond instantaneously to changes in the magnetic
field. This delay is due to microscopic magnetic
interaction and energy loss mechanisms (hysteresis loss,
eddy current loss) inside the magnetic material. Hysteresis
loss is the energy loss caused by the rearrangement of the
magnetic domain not keeping up with the changes in the
magnetic field. Eddy current loss is the loss of energy due
to the fact that the eddy current induced by the change in
magnetic field generates an additional magnetic field,
which acts in opposition to the original magnetic field.
Both phenomena are related to the delay in flux density
and magnetic field. B, This directly leads to an increase in
P, because the wider the loop, the greater the energy
loss. Additionally, the relationship between the phase
difference (¢) and the dissipated energy is observed [29].

w=§Hde%sin¢ (6)
Where B,, and H,, are the maximum values of each signal.
The loss energy w is proportional to P,,, so eventually, as
¢ increases, sing increases, resulting in a larger loss
energy and P.,. Ideally, in the absence of loss, ¢ = 0 (B
and H are in-phase), whereas in the presence of loss, H
leads, B lags, and ¢ > 0. In general, in soft magnetism
materials, the phase difference is small on the order of a
few degrees (sec), but in high Si steel or nanocrystalline
alloys, research is being done to minimize ¢ to a few® or
less by reducing losses [30]. Compared to Fig. 10(d), (e),
and (f), the relationship between Br/Bm and phase(deg.)
appears to be somewhat inconsistent with theoretical
expectations. This suggests that further research is needed.

Fig. 11 shows which magnetic conditions contain the
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Fig. 11. (Color online) Pie chart of the sum of the three models (TPOT, XGBoost, RFR) of (a) PFI value (b) SHAP value.

highest and most explanatory variables by summing the
PFI and SHAP values from three tree-based models based
on magnetic criteria. In both Fig. 11(a) and (b), the plots
indicate that the magnetic properties measured at B1, B4,
and B10 show relatively high importance, accounting for
approximately 70% and 50% of the explanatory capability,
respectively. Furthermore, the consistently high importance
of magnetic properties at flux densities of 100, 400, and
1000 A/m for B1, B4, and B10 provides insight into the
effectiveness of measurements across a wide range of
conditions, excluding high flux density regions. These
findings suggest that grain size prediction may be
efficiently supported by magnetic measurements at three
flux density levels.

With the aim of improving the model’s applicability, the
relationship between the input variables in B1, B4, and
B10 and grain size was organized into a linear expression.
The regression coefficients were organized using the
linear regression model ElasticNet.

D= 1O'OSJCBLBm + 7.11XB173r — 3-13xB]7Hm + e
= 9.23x%810 Brem — 7.5%B10 2phim @)

The following formula is a linear regression equation
that predicts grain size using 11 magnetic properties
measured at B1, B4, and B10, for a total of 33 variables.
In the above equation, the input variables B4 H, (A/m),
B10_phase(deg.) have a regression coefficient of 0. This
means that it has almost no significance, and it is also an
input variable that does not exist in Tables 6 and 7. The
R2 value of this linear model is 0.61, which is lower
compared to the performance of the previously developed
models. This indicates a limitation in predicting the
complex behavior of grain size using a linear equation.
As a result, using the same variables, three previously

Table 8. Final model performance comparison.

TPOT XGBoost RFR
R2 0.66 0.65 0.74
RMSE 16.49 16.59 16.27

selected tree-based models were applied to consider
nonlinear relationships through machine learning.

Table 8 compares the performance of the three models
for predicting grain size using 11 magnetic properties
measured in B1, B4, and B10, for a total of 33 variables.
The hyperparameter optimization for new input variables
is the same as the method used. The results show that the
RFR model is the most effective in predicting grain size.
Compared to Table 5, a decrease of approximately 0.09
and 0.14 in the R2? values of TPOT and XGBoost,
respectively, was observed, along with an increase in
RMSE of up to 3.95. In contrast, the performance of the
RFR model was found to remain almost unchanged.
Regression tree finds the best split based on MSE (or
other impurity) at each node. Random forests, on the
other hand, have the structural property that at each split
during the learning process, they select the input variable
with the largest impurity reduction from a randomly
selected subset of features. Because of this property, even
though feature importance is not explicitly evaluated
during modeling, low-importance input variables are used
relatively little or ignored in the model and, as a result, do
not have a significant impact on model performance [19,
31]. In Table 6, which measures feature importance when
modeling with 165 input variables, the magnetic
properties of B4 and B10 are the highest, which explains
why almost the same input variables were rated as highly
important as the models created in Table 8, and the fact
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Fig. 12. (Color online) Comparison of actual grain size and
predicted values by the RFR model at 1000 °C.

that these input variables were used as the split criterion
explains why almost similar performance was obtained.
Using the RFR model, Fig. 12 presents a comparison
between the actual grain size measured at 1000 °C and the
grain size predicted by the model. The actual grain size
exhibits a trend similar to the predicted values. The
average residual between the actual and predicted values
is 13.07 pm. Notably, the grain size begins to increase
after a heat treatment time of 44 minutes, indicating the
occurrence of recrystallization and grain growth phenomena.
At this condition, the RFR model showed its largest
prediction error of 34.05 gm. This appears to be due to
the limited amount of data available for grain sizes
exhibiting such phenomena, resulting in lower predictive
capability. Excluding the grain size error at 44 minutes,
the average error for the remaining data is 10.8 um,
suggesting that additional data collection in this range
may improve model performance. In addition, the model
was developed using magnetic data under three flux
density conditions: 100, 400, and 1000 A/m. This suggests
that measuring additional magnetic data between 100 and
1000 A/m such as data at 800 A/m, may lead to a model
with improved predictive performance. Although creating
a model to predict grain size using various magnetic
properties data after measuring magnetic properties
multiple times may have a higher prediction accuracy, in
order to increase the utilization of the model and reduce
the prediction cost, a model was created to predict grain
size using magnetic properties data measured at B1, B4,
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and B10, the three most important magnetic measurement
fix parameters selected in Fig. 11.

4. Conclusions

In this study aimed to non-destructively predict the
grain size of non-oriented electrical steel by analyzing the
complex relationships between various magnetic properties
and grain size using machine learning. To address the
black-box problem of the models, XAl techniques such as
PFI and SHAP were applied. Among the five models
(TPOT, XGBoost, RFR, DNN, and GPR), the XGBoost
model showed the highest performance with an R2 of
0.79 and RMSE of 12.64. Overall, the tree-based models
(TPOT, XGBoost, RFR) outperformed the neural network-
based models (DNN, GPR) in terms of both R2 and
RMSE. Based on the characteristics of the data, which
required learning non-smooth patterns, the three tree-
based models were selected for PFI and SHAP analysis.
In all three models, the most influential input variables
were magnetic properties measured at low-frequency flux
densities, such as B4 Br/Bm, B4 phase(deg.) and
B10 P, (W/g). Through SHAP dot plots and dependence
plots, the influence of these variables, their relationship
with grain size, and their interactions were analyzed, and
the results coincide with magnetic theories. By summing
the PFI and SHAP values of the three models, it was
confirmed that the variables under the magnetic conditions
B1, B4, and B10 accounted for about 70% of the model
explanation ratio. Using 33 magnetic properties measured
under these three conditions, the RFR model achieved a
performance of R2 = 0.74 and RMSE = 16.27. When
comparing the predicted grain size with experimental
values under the 1000 °C heat treatment condition, an
average error of 13.07 um was observed. Through this
study, it was demonstrated that grain size could be
effectively predicted with only three magnetic measurements,
improving practical applicability. This suggests that grain
size is measurable and controllable in real time during
continuous electrical steel production.
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