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This research investigates how to improve transformer efficiency and reduce manufacturing costs by

combining Genetic Algorithms (GA) and Finite Element Method Magnetics (FEMM) analysis. We present a

distinctive approach to optimizing transformer design parameters using GA, with the goal of improving

performance indicators such as energy efficiency while minimizing material costs. The FEMM analysis is used

to simulate and validate the magnetic properties of optimal transformer designs. Our methodology shows

considerable gains in transformer efficiency while also lowering costs, providing a twofold advantage that is

critical for long-term electrical engineering practices. The results show that combining GA with FEMM an

advanced algorithmic design with electromagnetic simulation, can result in more cost-effective and energy-

efficient transformer designs.
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1. Introduction

The promise of optimizing electrical machines and

systems lies in the potential to significantly enhance their

reliability, efficiency, and overall performance, which has

garnered considerable attention in the field of electrical

engineering. Among these systems, three-phase transformers

are indispensable components in power distribution

networks, responsible for stepping voltage levels up or

down and ensuring the efficient transmission of electrical

energy. As global energy demands continue to rise,

optimizing transformer design becomes increasingly

critical, offering the possibility of substantial benefits

such as improved efficiency, reduced operational costs,

and improved system stability and reliability [1, 2].

The endeavor to reduce total losses in transformers is

more than just an academic pursuit; even minor

improvements can yield considerable economic and

environmental benefits. Total loss minimization, a key

goal in transformer design, includes both core losses and

copper losses, which are critical criteria described in

multiple research studies, industry manuals, and inter-

national laws [3]. There are other transformer losses like

stray losses and dielectric losses. Stray losses may be

caused by the magnetic flux linked to the transformer

tank. Stray losses in a transformer are not considered in

this research due to the heavy computational load

required in FEMM, hence this paper will only cover

losses due to hysteresis and eddy current on the core and

copper losses on the windings of the transformer.

Traditional optimization techniques for transformer

design often involve complex, iterative procedures that

can be computationally intensive and time-consuming,

relying on intricate mathematical models that may not

always capture the full spectrum of real-world operational

conditions. These conventional methods, while effective

to an extent, may fall short in achieving the desired level

of precision and efficiency, particularly when dealing with

the intricate electromagnetic behaviors inherent in trans-

formers [4, 5].

In response to these challenges, this paper presents a

distinctive approach that integrates the Finite Element

Method Magnetics (FEMM) with a Genetic Algorithm

(GA) to optimize the design of three-phase transformers.

The Finite Element Method (FEM) is a powerful

numerical tool widely used in engineering for simulating
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physical phenomena, providing a detailed analysis and

visualization of electromagnetic fields within electrical

devices. FEMM (Finite Element Method Magnetics), a

specialized implementation of FEM for magnetic field

analysis, offers an in-depth understanding of the electro-

magnetic performance of transformers, enabling designers

to predict and fine-tune performance parameters with

high accuracy [6]. The Genetic Algorithm, inspired by the

process of natural selection, is an optimization technique

that mimics the principles of biological evolution,

including selection, crossover, and mutation [7, 8]. Unlike

some other optimization techniques that might require

longer convergence times or more computational resources,

the GA-FEMM approach has been shown in preliminary

assessments to reduce the computational burden, thus

streamlining the entire optimization cycle. The Genetic

Algorithm (GA) is thought to be more effective than other

optimization techniques for a variety of reasons, parti-

cularly when used with the Finite Element Method

Magnetics (FEMM) in transformer construction. GA is

recommended because it successfully searches large and

complicated design spaces for optimal solutions, which is

critical in transformer design, where various parameters

and their interactions have a substantial impact on

performance. Furthermore, GA can be efficiently

parallelized, enabling it to perform large simulations such

as those required for electromagnetic analysis in trans-

formers [9]. This parallel capacity considerably saves

calculating time, making it an attractive option in

industrial applications where time and resource efficiency

are critical. These features make GA ideal for the integ-

rated GA-FEMM technique used in transformer optimi-

zation, which provides a reliable and adaptable strategy

for increasing transformer efficiency and performance

while minimizing losses.

The objective of this study is to demonstrate how the

integration of FEMM and GA can lead to the optimal

design of three-phase transformers, with a focus on

improving operational efficiency, reducing material costs,

and ultimately contributing to the development of more

sustainable energy management practices.

This paper is organized to guide the reader through a

systematic exploration of our re- search. We begin with

the methodology section that explains the computational

techniques used to optimize transformer design through

the integration of GA with FEMM. Following this, the

results and discussion section presents findings from our

simulations, demonstrating how various design modi-

fications impact transformer efficiency and performance,

and interprets these results, considering their implications

for both transformer design practice and potential areas

for further research. Finally, the Conclusion summarizes

the study’s contributions to the field of transformer design

optimization, highlighting the practical benefits and

suggesting directions for future research.

2. Methodology

In this research, we develop a methodology that

intricately combines Finite Element Method Magnetics

(FEMM) with Genetic Algorithms (GA) to elevate the

design standards of three-phase transformers. Our approach

begins with the establishment of a baseline design for the

transformer, where essential parameters such as core

Fig. 1. (Color online) Flowchart of GA+FEMM Optimization.
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material, geometry, winding arrangement, and insulation

types are meticulously defined. This initial design serves

as the groundwork upon which our optimization process

builds.

Following the initial setup, we employ FEMM software

to conduct comprehensive electromagnetic simulations.

These simulations are critical as they provide a deep dive

into the baseline characteristics of the transformer,

highlighting areas such as magnetic flux distribution and

core saturation patterns. By understanding these found-

ational aspects, we identify potential inefficiencies and

areas where improvements are paramount. The precision

of FEMM is crucial, as it provides deep insights into the

distribution of electromagnetic fields, core losses, leakage

inductance, and overall efficiency across various loading

conditions [10, 11]. These detailed simulations allow for a

thorough analysis of how the transformer will perform

under real-world conditions, enabling designers to pinpoint

areas for improvement and make informed decisions

during the optimization process.

Using the insights gathered from FEMM simulations,

the Genetic Algorithm takes the front stage in refining

transformer design. The GA iteratively adjusts essential

design parameters like as core shape, lamination thick-

ness, and winding configurations to maximize transformer

efficiency and reduce material use. GA is a robust

optimization technique inspired by the principles of

natural evolution, where design candidates (solutions)

undergo selection, crossover, and mutation processes to

evolve toward optimal solutions [12]. Each iteration of

the GA process includes complex selection, crossover,

and mutation phases, all guided by fitness evaluations

based on the initial and ongoing FEMM investigations.

This dynamic and responsive optimization approach is

critical for successfully navigating the broad design

space, ensuring that each tweak contributes favorably to

the overall design objectives.

The strong interplay between GA optimization and

FEMM validation creates a constant iterative feedback

loop. To validate the effectiveness of each alteration,

optimized designs are cycled through FEMM simulations

again. This loop continues until the incremental gains in

efficiency and cost reductions reach a plateau, suggesting

convergence toward an ideal design configuration. Once a

potentially optimal design is identified, we move to the

prototype testing phase. This stage is crucial for bridging

the gap between theoretical simulations and tangible

operational performance.

By meticulously integrating advanced simulation tools

with evolutionary optimization techniques, our meth-

odology not only enhances the performance of three-

phase transformers but also ensures these improvements

are achievable within practical, real-world constraints.

This approach allows for a sophisticated exploration of

transformative solutions that meet the modern demands of

efficiency and cost-effectiveness in transformer manu-

facturing. Fig. 1. depicts the flowchart for the meth-

odology.

2.1. Transformer Specification

A full description of the transformer's properties is

required to improve its efficiency and cost-effectiveness

by integrating genetic algorithms with finite element

method magnetics (FEMM) analysis. The detailed

specification includes numerous key components that are

critical for future analysis and optimization processes.

The prototype transformer being studied is a com-

mercial three-phase unit intended for medium to high-

voltage applications. This option reflects the typical

requirements of modern power distribution networks,

which prioritize efficiency and reliability. The core

material used is high-grade Cold-Rolled Grain Oriented

Steel (CRGO) and its properties are shown in Table 1 and

Fig. 2 shows the B-H Magnetization Curve Validation

comparing prototype measurements with FEMM simulation

results. The excellent agreement (maximum error 2.1%)

validates our CRGO material model implementation. The

operating points at 1.48T (prototype) and 1.50T (FEMM)

demonstrate accurate flux density prediction under

nominal conditions. It is known for its exceptional

magnetic characteristics and reduces core losses, an

important component in transformer performance. In

transformer design, core material selection is crucial as it

directly influences efficiency and effectiveness in its

operation. CRGO is one of the frequently used magnetic

materials due to its excellent magnetic properties,

especially high magnetic permeability and low power

loss, which play a vital role in high-performance trans-

Table 1. Magnetic Characteristics of CRGO Material Used in

FEMM Analysis from Non-linear B-H Curve Model.

Property Symbol Values

Relative permeability (linear) rx 55,000

Relative permeability (linear) ry 55,000

Maximum B-H curve angle max 2.85o

Coactivity Hc 0 A/m

Electrical conductivity  4.8221 MS/m

Lamination thickness - 0.27 mm

Lamination fill factor - 0.97

Number of strands - 0

Strand diameter - 0 mm
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formers. These inherent qualities, whereby a significant

improvement in the transformer efficiency due to a

reduction of the core losses is achieved, form the basis for

adopting CRGO in the transformer model in the present

study.

A distinctive feature of CRGO is its anisotropic magnetic

properties, meaning that its magnetic characteristics vary

depending on the direction of magnetization. This

anisotropy is particularly relevant to transformer core

design because it affects how the core handles magnetic

flux under operational conditions. The orientation

distribution function (ODF) plays a pivotal role in

characterizing the anisotropy of these materials. It

accounts for the distribution of crystallographic orientations

within the steel, which directly impacts its magnetic

properties. The ODF method has been successfully

applied to CRGO steels, offering a robust framework for

predicting and understanding their behavior under various

magnetic orientations [13]. Central to the quantification

of magnetic anisotropy using the ODF is the ability to

determine the magnetic properties along different

directions with respect to the rolling direction (RD). For

instance, by considering only a few measurement

directions, specifically 0°, 45°, and 90° relative to the RD

(Rolling direction). It is possible to effectively predict

magnetic behaviors across all angles. This is captured in

the mathematical relationship which models the magnetic

property A as a function of the angle  : 

A = A0 + A1 cos(2) + A2 cos(4) (1)

Where A0, A1, and A2  are coefficients derived from

measurements at these principal directions. These coeffi-

cients are crucial for describing the average anisotropic

properties and their deviation from isotropy. This is

discussed in more detail in [14]. This mathematical model

facilitates a more nuanced understanding of the

anisotropic magnetic properties and enables the design of

more efficient magnetic circuits by predicting magnetic

properties for arbitrary angles with respect to the RD.

Misalignment of the core in these regards increases the

losses as the flux will face greater magnetic resistance. In

[15] the author of the paper describes the measurements

of electrical steel. The results show dependency between

the anisotropy angle and the magnetization curve, as well

as core losses. In our methodology, the examined core

was made with lamination at 45o as shown in Fig. 4. 

In our simulations and design optimizations, a detailed

model of the CRGO material properties, including its

anisotropic performance, is considered. Therefore, para-

meters in the FEMM model are carefully tuned to reflect

the anisotropic aspect of CRGO to realize more realistic

and representative real-world simulations. By integrating

the Genetic Algorithm (GA) with our FEMM simulations,

we iteratively refine the transformer's design to reduce

losses, particularly focusing on optimizing the core's

geometry and material distribution to handle anisotropic

effects efficiently. This iterative process allows for the

detailed exploration of various design configurations,

identifying optimal arrangements that specifically reduce

the adverse impacts of anisotropy on transformer

performance.

Copper conductors are employed for their low resistance

and great conductivity. The arrangement of these windings

is critical since it affects the transformer's impedance,

voltage regulation, and efficiency. Each winding is

meticulously calculated to create the best possible cost-

performance balance, maximizing material utilization

while ensuring that the transformer satisfies the stated

energy efficiency standards.

The transformer's operational specifications include its

rated power capacity, which is determined based on the

expected load conditions. Under typical operating condi-

tions, the three-phase transformer is designed to function

at approximately 80% of its nominal power capacity,

equivalent to 120 MVA. This operating point is chosen in

Fig. 2. (Color online) B-H Magnetization Curve Validation

comparing prototype measurements with FEMM simulation

results.

Fig. 3. Transformer core joint configurations (a) Miltered 45o

(b) Butt-lap 90.
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this study to optimize efficiency and reliability, while also

accommodating expected variations in load within safe

operational limits. Voltage levels for both primary and

secondary sides are defined according to the requirements

of the power distribution network. Additionally, the

efficiency parameters are set to meet or exceed current

industry standards, with specific goals for reducing load

and no-load losses.

Table 2. Shows the specification and values of the

prototype transformer’s parameter where HV represents

high voltage windings and LV represents low voltage

windings, Table 3. Compares prototype and FEMM

simulation and Figure 5 shows the Altair Flux 3D design

of the Transformer’s prototype 

2.2. Considerations and Justification for Model Sim-

plifications

 In the pursuit of optimizing transformer design through

the integration of Genetic Algorithms (GA) and Finite

Element Method Magnetics (FEMM), certain simplifications

were deemed necessary to balance the depth of analysis

with computational feasibility. This research primarily

employed 2D simulations and excluded detailed

considerations of thermal effects and stray losses. While

Fig. 4. (Color online) Core design in FEMM showing miltered

joint.

Table 2. The Specification of Three-phase Transformer Proto-

type.

Parameters Specification Values

Rating

Power

Frequency

Voltage (HV/LV)

Current (HV/LV)

Number of turns (HV/LV)

150MVA

50Hz

132/14.1KV

655/3537 A

432/80

Windings

Material

Density 

Relative Permeability

Resistivity

Copper

8300 Kg/m3

1

1.724e-008 ohms.m

Core

Material

Permeability

Resistivity

Magnetization

CRGO

55,000

2.07e-7 ohms.m

1.5T

Magnetic Core

Height

Length of yoke

Section of columns

Section of yoke

Thickness of core

Distance between legs

3815 mm

3610 mm

820 mm

820 mm

816 mm

1395 mm

HV windings

Height 

Inner radius

Outer radius 

Width

1935mm

571.5 mm

666.5 mm

95 mm

LV windings

Height 

Inner radius

Outer radius 

Width

1935 mm

455 mm

525 mm

70 mm

Table 3. Transformer Prototype and FEMM Simulation.

Pareameters Prototype Femm

Total-loss (KW) 187.45 185.70

B (T) 1.48 1.50

Efficiency (%) 90.30 91.43

Fig. 5. (Color online) Altair Flux 3D design of the Trans-

former’s prototype.
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these decisions were driven by the need to manage

computational resources efficiently, they introduce

specific limitations that are important to acknowledge and

understand.

The exclusion of 3D modeling in this study is primarily

due to the significant computational resources required

for such detailed analyses, which are not always feasible

within the constraints of academic research settings.

Although 3D models provide a more comprehensive

representation of physical phenomena, particularly in

capturing complex magnetic interactions and flux leakage

effects, the 2D approach allows for more extensive

parametric studies and iterative optimizations due to its

lower computational demands. It is recognized that this

simplification might limit the accuracy in predicting the

magnetic flux distribution and localization of flux

concentrations which are better represented in a three-

dimensional space.

Further, the thermal effects and stray losses, which can

notably influence transformer performance, were not

explicitly modeled. Stray losses, often caused by flux

leakages impacting other conductive components of the

transformer, contribute to overall efficiency losses and

heat generation. Similarly, thermal modeling, which could

provide insights into the heat distribution and its impact

on transformer materials and longevity, was omitted. The

absence of these considerations was a calculated decision

to focus the computational efforts on optimizing core

geometries and material properties directly influencing

hysteresis and eddy current losses which are more critical

to the primary objectives of enhancing efficiency and

cost-effectiveness.

The simplifications made in this study are justified by

the significant computational load that detailed FEMM

and GA require. By focusing on more manageable model

complexity, the study benefits from increased computational

speed, allowing for broader optimization studies involving

numerous design iterations. This approach aligns with the

research aim to demonstrate the potential of GA and

FEMM for efficient transformer design, providing a

foundation upon which more detailed future studies could

build.

2.3. Enhanced 2D Simulation and Integration Tech-

niques for Transformer Design Optimization

In transformer design optimization, accurately modeling

the electromagnetic properties of three-dimensional objects

such as transformer cores in a two-dimensional (2D)

simulation environment poses unique challenges. This

section details the methodologies employed to address

these challenges, focusing on geometric adjustments for

2D simulations, the integration of FEMM with MATLAB

using Lua scripts, and the consideration of material

properties in simulations.

• Geometric Adjustment for 2D simulation

Finite Element Method Magnetics (FEMM) models

electromagnetic processes in two dimensions, a constraint

that necessitates careful geometric adjustments when

representing inherently three-dimensional components

like transformer cores. In standard transformer designs,

the core typically comprises limbs and windings that are

not easily depicted in 2D. For instance, the transformer's

limb, which may physically exhibit a three-teeth cross-

sectional shape, must be simplified for accurate 2D

simulation [16, 17]. While FEMM provides a robust

platform for electromagnetic simulations, the geometric

and material adjustments required for converting 3D

objects into a 2D format are essential for achieving

accurate results. Computation efficiency and accuracy call

for a balance in transformer design optimization, hence

the use of 2D modeling in simulations through finite

Element Method Magnetics or FEMM. Transformers are

naturally three-dimensional devices, but 3-D simulations

are immensely costly computationally, particularly for

iterative algorithms like GA. In turn, it is so important to

transition to the 2D model, despite the simplifications that

are present, for its ability to provide a much more

dynamic and responsive process of design [18]. We do

this by projecting the geometrically complex structure of

a transformer's core and its windings onto a plane, using

an approach that gains simplicity based on the assumption

of uniformity along an axis perpendicular to the plane of

analysis. In practice, what this means is to develop a

model, ignoring variations that would take effect concerning

magnetic flux distribution in the third dimension. Such a

simplification is justified by the significantly reduced

computational demands that permit more extensive

investigation of design variables within feasible time

constraints. Material properties also require careful

adjustment to ensure that the behavior in the 2D model

reflects real-world 3D characteristics. Key properties such

as magnetic permeability and electrical conductivity are

adapted to account for the reduced dimensionality. For

example, for nonlinear problems, the hysteresis lag is

assumed to be proportional to the effective permeability.

At the highest effective permeability, the hysteresis angle

is assumed to reach its maximal value of hmax as shown

in (2).

 (2)

Where h(B) is the hysteresis angle or loss angle between

h B  = 
eff B 
eff max

----------------- 
  hmax
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the magnetic field H and the magnetic flux density B as

represented in FEMM. eff (B) is the effective permeability

at a given magnetic flux density and eff,max is the

maximum effective permeability that the material can

achieve. 

 In the 3D physical model of the transformer, the core is

typically designed with rounded edges. These rounded

edges help in reducing sharp magnetic field gradients that

can lead to inefficiencies such as increased hysteresis and

eddy current losses. However, when approximating this

model in a two-dimensional Finite Element Method

Magnetics (FEMM) simulation, these three-dimensional

rounded edges are represented as sharp, rectangular edges.

This simplification is necessary due to the constraints of

the 2D simulation environment, which does not easily

accommodate the complex curvature of rounded edges.

This adjustment in the model helps streamline the

simulation process while maintaining an acceptable level

of accuracy in the analysis of magnetic flux distribution

within the core. These changes in geometry and materials

cannot be ignored in the simulation, they may bring

disparities in the magnetic flux distribution that was

estimated and the loss calculations with respect to a full

3D study. These geometric simplifications are crucial for

ensuring that the 2D model accurately reflects the

magnetic properties of the core, despite the limitations

imposed by the two-dimensional analysis environment of

FEMM.

• Integration of FEMM with MATLAB Using Lua Script

To enhance the capabilities of FEMM and enable more

dynamic and complex simulations, a Lua scripting

interface has been used to integrate FEMM with

MATLAB. This integration leverages MATLAB’s powerful

computational abilities, allowing for advanced data

manipulation, parameter control, and automation of the

simulation process. The integration allows for seamless

communication between FEMM and MATLAB. By using

Lua scripts, we programmatically adjust simulation

parameters directly from MATLAB, thus streamlining the

process of model configuration and enabling dynamic

changes based on real-time analysis results. This method

of integration is especially beneficial for managing

complex simulation workflows that require frequent

adjustments of parameters to optimize performance

criteria. For example, during the transformer's no-load

simulation at nominal voltage, the Lua script adjusts the

currents in phases B and C to correspond accurately with

the magnetic flux distributions caused by the applied

voltage. Meanwhile, phase A’s current is elevated to its

peak value as part of the scenario being tested. This kind

of precise control over simulation parameters directly

from MATLAB enhances our ability to model and

analyze different operational conditions meticulously. It

allows us to observe the effects of various electrical loads

on the magnetic flux distribution and core saturation in

detail. Furthermore, this interconnected setup between

MATLAB and FEMM through Lua scripting extends

beyond simple parameter adjustments. It enables the

implementation of complex algorithms developed in

MATLAB to control and optimize the simulation pro-

cesses in FEMM, making it possible to automate iterative

tasks, optimize design parameters, and systematically

explore the impact of different design alterations on

transformer performance. The ability to programmatically

control and automate these simulations from MATLAB

significantly increases the efficiency and accuracy of our

design process, helping us develop transformer models

that are not only optimized for performance but also

robust and reliable under a variety of electrical operating

conditions. This integration thus serves as a cornerstone

for advancing transformer design, providing a sophisticated

toolset that leverages the strengths of both FEMM's

detailed electromagnetic simulation capabilities and

MATLAB’s robust computational and algorithmic prowess.

The result is a highly effective simulation environment

where complex transformer designs can be refined and

validated with precision, ensuring that the final products

are both innovative and aligned with the practical

demands of energy systems.

• Material Properties and Simulation Settings

A critical aspect of FEMM simulations is the accurate

representation of material properties, particularly the iron

core magnetization curve. The precision of the simulation

outcomes is significantly influenced by the correct

consideration of the lamination fill factor, set at 0.97 in

this study. The fill factor represents the proportion of the

core volume filled by the magnetic steel, with the

remainder consisting of air gaps and insulation. For

example, if you had a lamination in which the iron was

12.8 mm thick, and the insulation was 1.2 mm thick then

the fill factor would be:

FillFactor = = 0.914 (3)

The accurate modeling of these material properties in

FEMM is not merely a matter of inputting values into a

simulation program; it involves a comprehensive under-

standing of how these properties interact with the

electromagnetic fields during operation. For instance, the

magnetization curve must be carefully aligned with

empirical data from manufacturer datasheets or derived

from laboratory measurements to ensure it accurately

12.8

1.2 + 12.8
------------------------
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reflects the real-world behavior of the core material under

various loading conditions.

 The integration of FEMM with MATLAB using Lua

scripting significantly enhances the accuracy and flexibility

of these simulations, offering a comprehensive set of tools

for detailed analysis and optimization of transformer

properties. This methodology not only mitigates the

inherent limitations of FEMM's two-dimensional frame-

work but also harnesses MATLAB's computational

strengths to facilitate more precise predictions and design

modifications.

2.4. Importance of Loss Angle in Reducing Trans-

former Iron Loss in FEMM

 When calculating losses in transformers, particularly

iron losses, the consideration of the loss angle is of

paramount importance. The loss angle, often denoted by

the symbol , represents the phase difference between the

magnetic field (H) and the magnetization (M) in magnetic

materials [19]. This angle plays a critical role in deter-

mining the extent of energy dissipation within the

material, particularly in the form of hysteresis losses.

 In many magnetic materials, the default loss angle is

set to zero in simulation tools like FEMM, which implies

that these materials do not contribute to hysteresis losses.

However, this is not always the case in real-world

applications [20], which talks about the use of loss angle

in detail in the determination of iron loss in a three phase

transformer and was referenced in this text for the

determination of the loss angle. For example, in FEMM

software, 1006 Steel which is a commonly used magnetic

material, has a predetermined loss angle of 20 degrees.

This non-zero loss angle indicates that there is a

measurable phase difference between the magnetic field

and the magnetization, leading to hysteresis losses. In our

study, we utilized the "loss angle," a mathematical tool, to

facilitate the calculation of loss density in FEMM [21].

This method, similar to Bertotti's model, offers simplicity

in implementation and was chosen for its ease of use in

FEMM simulation.

 The loss angle is crucial because it directly influences

the hysteresis loop of the material. The hysteresis loop

represents the relationship between the magnetic field

strength (H) and the magnetic flux density (B) over a

complete cycle of magnetization. The area enclosed by

this loop corresponds to the hysteresis loss per unit

volume, also known as loss density. This loss density can

be mathematically expressed as in (4):

Wh = HdB  (4)

Where dB represents a small variation in magnetic flux

density, and H is the magnetic field strength. The integral

is taken over a full hysteresis loop cycle, capturing the

total energy dissipated as heat within the material during

one complete magnetization cycle. A larger loss angle

typically correlates with a broader hysteresis loop, which

in turn signifies greater energy dissipation per cycle [22].

This increased energy dissipation directly translates to

higher hysteresis loss density, making the accurate

consideration of the loss angle essential for precise loss

calculations. Fine-tuning this parameter ensures that the

simulations accurately reflect the real-world behavior of

the material, leading to more reliable predictions of iron

losses. Understanding and incorporating the loss angle

into transformer design is thus a crucial step in optimizing

efficiency and minimizing energy losses in transformers.

By fine-tuning the loss angle, the research aims to align

the phase difference to a point where these losses are

minimized. This optimization process involves adjusting

the physical properties of the transformer, such as the

lamination thickness in the core and the type and layout

of the windings. Each of these adjustments is targeted to

reduce the inherent resistance and reactance, thereby

tightening the loss angle.

2.5. Role of Complex Permeability in Determining the

Loss Angle

In this section, we explore the role of complex perme-

ability in determining the loss angle and how this affects

the minimization of losses in transformers to maximize

efficiency. The concept of complex permeability, integral

to transformer design, includes both real and imaginary

components that significantly influence the transformer's

operational efficiency. Complex permeability, denoted as

 = '  j'', where ' and '' represent the real and

imaginary parts, respectively, plays a pivotal role in

determining the magnetic response of the core material

under alternating magnetic fields. The real part ' primarily

influences the magnitude of the magnetic flux density

produced within the core, while the imaginary part '',

often related to the core loss resistance, influences the

energy dissipation within the transformer.

Eun S. Lee [23] investigated the complex permeability

of magnetic materials in a simple test prototype. In his

research, the inductor model-based calculation methodo-

logies for complex permeability are suggested to find the

core loss characteristics. Fig. 6. Shows the simplified

circuit of the inductor model used as explained in the paper.

From the experiment in [23] the real and complex

permeability is given by; 
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(5)

(6)

Where Ae and le are the magnetic areas and effective

magnetic path length respectively. Le(B) is the complex

inductance, rcp is the resistance associated with the copper

windings and rco is the core loss resistance.

From equation (6) it can be seen that the real perme-

ability  is proportional to the inductance Le(B) and the

imaginary permeability is proportional to the core loss

resistance rco.

The loss angle δ, crucial in transformer design, is

determined by the ratio of the imaginary permeability to

the real permeability given in (7). This angle is indicative

of the phase difference between the applied voltage and

the resultant magnetic flux, and it directly correlates with

the efficiency of the transformer: a smaller loss angle

means that less energy is wasted as heat, thereby increas-

ing the transformer's efficiency.

(tan() = )  (7)

To minimize losses, adjusting the loss angle to an

optimal value where the resistive losses (primarily influenced

by ) are minimized is essential. This optimization often

involves selecting materials with specific permeability

characteristics that align with operational frequencies and

expected load conditions. For example, materials with a

lower  at the operating frequency of the transformer

can reduce eddy current and hysteresis losses, two major

contributors to energy inefficiency in transformers.

2.6. Genetic Algorithm (GA)

In the pursuit of increasing transformer efficiency and

cost-effectiveness, the Genetic Algorithm (GA) emerges

as a critical computational tool designed to optimize the

delicate design parameters of transformers. This part

focuses on the integration and implementation of GA

within the context of our research.

Genetic algorithms, which are based on the principles

of natural selection and genetics, provide a reliable

technique for dealing with difficult optimization problems

in engineering design [24]. In transformer design, GA is

used to optimize parameters that have a substantial impact

on efficiency and cost, such as core material, shape, and

size. The selection of these parameters has a direct impact

on the transformer's energy losses, including core and

copper losses, and their optimization is critical for improving

overall performance.

The GA follows a cycle of selection, crossover, and

mutation processes. It starts with a set of potential

solutions, each of which represents a possible transformer

design recorded as a string of genes. Each member of the

population is evaluated using a fitness function designed

expressly to determine the transformer's efficiency and

cost-effectiveness. This fitness function incorporates the

results of preliminary FEMM simulations, providing a

realistic assessment of how well each design meets the

specified efficiency criteria under operational conditions.

For our study, the GA was configured with a population

size of 300 to ensure a diverse genetic pool. This size

facilitates a broad search of the design space, increasing

the probability of finding a near-optimal solution. The

algorithm was allowed to evolve over 300 generations,

providing sufficient iterations for the solutions to mature

and converge toward optimal design configurations. Our

implementation leverages MATLAB’s Genetic Algorithm

Toolbox, which facilitates sophisticated handling and

automatic estimation of GA parameters, tailored to the

specific needs of the problem at hand. The calculation

time for one generation varies depending on the complexity

of the fitness function, the number of design parameters,

and the size of the population. For our setup, with a

population size of 300, each generation requires approxi-

mately 2 to 5 minutes to compute using standard comput-

ational resources. The toolbox’s robust computational

capabilities allow for dynamic adjustments and real-time

analysis, making it an invaluable asset in managing the

iterative nature of transformer design optimization.

We address the optimization of three-phase transformers

with a multifaceted strategy concentrating on two important

objectives: reducing total manufacturing costs, and

maximizing the transformer's efficiency. Table 4 presents

the design variables and description and Fig. 7 depicts the

2D representation of the three-phase transformer in

FEMM.
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Fig. 6. Simplified equivalent circuit of the inductor model.
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By holistically addressing these objectives, the GA is

capable of producing designs that achieve an optimal

balance between cost and performance. The iterative

nature of the algorithm, combined with its adaptive

parameter adjustments and guided selection process,

ensures that the resulting transformer designs are not only

theoretically optimal but also practical and manufacturable.

The ability to adaptively evolve the design parameters

based on real-time fitness evaluations allows for a more

efficient search for the global optimum, ultimately leading

to transformers that meet stringent efficiency and cost

criteria.

2.6.1. Objective Function Definition 

The definition of the objective function is an essential

component of any optimization task, including the use of

Genetic Algorithms (GA) in transformer design. The

objective function in the context of this study is a mathe-

matical formulation that contains the key performance

indicators (KPIs) crucial to the design of efficient and

cost-effective transformers.

A. Minimization of Energy Losses 

The first component of the objective function aims to

reduce total energy losses, including core and copper

losses. Core losses are primarily caused by hysteresis and

eddy currents, whereas copper losses result from winding

resistance. These losses not only impact the transformer’s

efficiency but also its operational costs and heat

generation.

• Copper Loss:

According to [25] the copper loss in LV (or secondary)

winding is denoted by “wsCu (in KW)” and therefore it

can be mathematically expressed with respect to the

primary design variables shown in Table 4.

wsCu = rho(1 + ecfs)(Js)2Vs (8)

Where “rho” is the copper resistivity in (ohm-m/mm2),

“ecfs” is the eddy current factor which is due to stray flux

and depends on the type of wire or cable making up the

winding and Vs is the copper volume in LV winding and

can be expressed as

Vs = (3pfs × 2pi × Rshsts) (9)

Where pfs is the fill factor of the secondary winding

(specified by the user)

 Putting (9) in (8) the copper loss for the low-voltage

winding becomes

wsCu = rho(1 + ecfs) (Js)
2(3pfs × 2pi × Rshsts)  (10)

Similarly the total copper loss in in HV (or primary)

winding denoted by “wpCu (in KW)” is represented by

wpCu = rho(1 + Ke)(Jp)
2Vp  (11)

Where Vp is the copper volume and is given by;

Vp = (3pfs × 2pi × Rshsts)  (12)

Therefore, we can write:

wpCu = rho( 1 + ecfs)(Jp)
2(3pfs × 2pi × Rshsts)  (13)

Therefore, the total copper loss is:

Total copper loss = wsCu + wpCu (14)

• Core Loss:

The core loss is comprised of both eddy current loss

and hysteresis loss which is given as:

Table 4. design variables of the transformer.

Primary Design Variables Description

Rs (X1) Radius of LV winding (mm)

Rp (X2) Radius of HV winding (mm)

hp (X3) Height of HV windings (mm)

hs (X4) Height of LV windings (mm)

ts (X5) Thickness of LV winding (mm)

tp (X6) Thickness of HV windings (mm)

Np (X7) Number of turns of HV winding

Ns (X8) Number of turns of LV winding

Js (X9) Current density of LV (A/mm2)

Jp (X10) Current density of HV (A/mm2)

 (X11) Loss angle

Ww (X12) Window width (mm)

Wh (X13) Window height (mm)

T (X14) Lamination of core (mm)

Fig. 7. (Color online) Geometry of transformer.



Journal of Magnetics, Vol. 30, No. 3, September 2025  355 

Pe = K1 f 2t2Bm
2 V  (15)

Phy = K2 f Bm
n V (16)

Where Pe and Phy are the eddy and hysteresis loss and n is

the Steinmetz constant. t is the core lamination thickness

(0.27 mm), f is the frequency, V is the Volume of the

core, K1 and K2 are the material coefficients.

 Therefore,

Total core loss = Pe + Phy  (17)

B. Cost Reduction

The second component of the objective function is to

reduce the cost of materials and production processes.

This entails maximizing the usage of materials that

provide great performance without incurring excessively

high costs. The function examines the cost of core materials,

winding materials, and other construction components.

Calculating the weight of both primary and secondary

winding coil:

 (18)

Where Lmt is the mean length per turn for both primary

and secondary coils and dw is the diameter of the

windings. 

Therefore, the weight of the primary coil is given as:

Weightp = copa1Lmt Np  (19)

Total weight =Weightp + Weights (20)

Where a2 is the cross-section area of the copper coil. The

cost is based on the current market prices or specific

supplier prices:

Ccu = price per unit weight × total weight (21)

Where price per unit weight is the cost per kilogram or

pound of copper.

C. Calculating the weight of the iron core in the

transformer

Weight of iron core = iron volume × iron density (22)

Volume of core = LmAi (23)

Lm = total length of mean flux path

Ai = iron area

Lm = 2[Ww + dc] + 2[Wh + a] (24)

Weight of core = LmAis (25)

Where s is the density of steel (7.65 g/cm3), dc is the

depth of the core and a is part of the vertical dimension

that completes the flush path circuit around the core. 

The cost is based on the current market prices or

specific supplier prices:

Csteel = price per unit weight × weight of core (26)

2.6.2. Constraint Handling in Transformer Design

Optimization

When optimizing three-phase transformer designs,

numerous restrictions must be considered to guarantee

that the final design fits specified electrical and physical

requirements. These constraints are required not just to

preserve the transformer's functioning and dependability,

but also to comply with practical production limits and

regulations. To meet these criteria, we use a number of

inequality constraints between design parameters, as well

as interval constraints that define allowed ranges for

specific important variables.

The inequality constraints in this optimization process

ensure that the relationships between different design

parameters adhere to necessary electrical characteristics

and physical restrictions. These constraints are crucial for

maintaining the integrity and performance of the trans-

former within the defined operational limits. The

constraints used in the study are expressed as follows:

(27)

(28)

 (29)

Where:

Amin  and Amax represent the minimum and maximum

allowable values for the core cross-sectional area. This

constraint ensures that the core's cross-sectional area stays

within the specified limits, which is crucial for achieving

the desired magnetic flux density and ensuring the core

does not become saturated under normal operating

conditions.

Hcore  and hcore  denote the lower and upper bounds for

the core height. This constraint ensures that the height of

the core, including the windings and the insulation layers,

remains within the predefined physical limits. The term

WH + 2tmax  refers to the height of the windings plus the

maximum allowable insulation thickness on both sides,

ensuring that the transformer can be efficiently assembled

and remains structurally sound.

Lcore  and lcore are the lower and upper limits for the core

length. The expression 2Lm  + tmax represents the length of

the core considering the mean length of the magnetic path

(Lm ) and the maximum insulation thickness. This

Lmt =  dw

Ww

2
-------+

 

Amin A Amax 

Hcore WH 2tmax+ hcore

Lcore 2Lm tmax+ lcore
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constraint ensures that the length of the core is within the

specified limits, which is important for maintaining the

desired magnetic path length and ensuring that the

transformer fits within the allotted physical space.

The incorporation of these constraints is critical to the

effectiveness of the optimization process. They act as

boundary criteria for the Genetic Algorithm while it

explores the design space, guaranteeing that the solutions

generated are not only optimal in terms of performance

and cost, but also adhere to physical and electrical

constraints. By following these criteria, the algorithm can

generate transformer designs that are both theoretically

and practically feasible.

3. Results and Discussion

The integration of Finite Element Method Magnetics

(FEMM) with a Genetic Algorithm (GA) in this study

yielded significant advancements in the optimization of

three-phase transformer designs, demonstrating the effec-

tiveness of combining advanced simulation tools with

evolutionary algorithms to achieve superior performance

and cost-efficiency. One of the most notable outcomes

was the substantial reduction in the use of copper and

core steel components. These material reductions directly

contributed to a decrease in overall costs, as shown in

Fig. 8, without compromising the operational efficiency

of the transformers.

The reduction in material usage was achieved through

the GA's iterative process, where design parameters were

continuously refined based on performance metrics from

FEMM simulations. This allowed the algorithm to identify

optimal configurations that minimized material bulk

while ensuring the core and windings maintained their

structural and functional integrity. This result highlights

the GA's ability to navigate complex trade-offs between

material savings and electrical performance, ensuring cost

reductions did not come at the expense of efficiency.

Efficiency improvements were another significant

achievement, with optimized transformer designs consistently

outperforming prototypes in terms of operational efficiency,

as depicted in Fig. 9. These gains were primarily due to

precise adjustments in the positioning and sizing of the

core and windings, which were iteratively optimized by

the GA. The enhanced efficiency resulted from reduced

core and copper losses, major contributors to transformer

inefficiency. By fine-tuning the magnetic circuit and

optimizing the winding configuration, the GA minimized

these losses, leading to transformers that operate more

efficiently under typical load conditions. This improvement

is particularly important for energy savings and long-term

operational costs, as higher-efficiency transformers contribute

to lower energy consumption and reduced expenses over

the transformer's lifespan.

Figure 8 and 9 illustrate the outcomes of the same

optimization run conducted using MATLAB simulations.

These figures collectively demonstrate the evolution of

cost and efficiency metrics over successive generations,

providing a comprehensive view of the optimization

process and its results. The results also revealed a strong

correlation between the total cost minimization strategy

and the reduction in material utilization, indicating that

the optimization process was effectively applied across

multiple facets of transformer design. The GA's ability to

simultaneously reduce material costs and enhance efficiency

showcases its robustness in addressing complex, multi-

objective optimization problems. By integrating cost andFig. 8. Cost across generations.

Fig. 9. Efficiency across generations.



Journal of Magnetics, Vol. 30, No. 3, September 2025  357 

efficiency objectives, the GA ensured that the final

designs were both cost-effective and high-performing, a

critical balance in modern transformer design where

reducing costs must align with maintaining or improving

operational efficiency.

Overall, the successful application of FEMM and GA in

this study illustrates the potential for these tools to

revolutionize transformer design, enabling the creation of

transformers that are both economically and operationally

superior to traditional designs. This methodology could be

extended to other areas of transformer design, including the

optimization of insulation systems, cooling mechanisms,

and overall structural design.

The GA-optimized transformer has a total loss reduction

of 162.29 KW. However, its efficiency grew by 4.4

percent. Fig. 10a shows the post-processed view of the

value of the iron loss gotten in FEMM after optimization

and Fig. 10b shows the post-processed asymmetric view

of the transformer core to find the copper loss. Additionally,

the cost savings are reported in Table 5 and also Fig. 11

validates the spatial accuracy of our Enhanced 2D FEMM

model through magnetic flux density distribution comparison.

The simulation results (b) closely match the prototype

measurement pattern (a), with correlation coefficient R² =

0.987, confirming that our geometric adjustments and

material property implementations accurately represent

the physical transformer behavior.

Figures 10a, and 10b stem from targeted modifications

tailored for specific simulation analyses using Finite

Element Method Magnetics (FEMM), unlike Fig. 7 which

depicts the initial transformer model with both primary

and secondary windings, representing the full operational

setup. Fig. 10a, designed for iron loss analysis, excludes

the secondary winding to eliminate its influence and focus

solely on the primary winding. This simplification

enhances the clarity of iron loss calculations. Conversely,

Fig. 10b is optimized for copper loss analysis using an

asymmetric model that reduces computational demands

while ensuring accurate results. These model adjustments

are critical for efficiently simulating specific loss types

within the transformer. Also, the comprehensive error

analysis presented in Fig. 12 provides statistical validation

of our Enhanced 2D FEMM model performance across

all measurement points. The relative error distribution

shows that 10 out of 11 validation points (91%) fall

within the acceptable ± 2% engineering tolerance, with

only measurement point 3 showing a slightly higher error

of 4.8%. This outlier occurs at a core corner region where

3D edge effects are most pronounced, which is expected

given the 2D model limitations. The error pattern demon-

Fig. 10. (Color online) (a) FEMM representation of the iron

loss (b) FEMM representation of the copper loss.

Table 5. Comparison between transformer prototype and ga-

femm method.

Variables Prototype GA_FEMM

Bmax (Tesla) 1.48 1.53

NLL or Pnl (KW) 37.45 28.24

LL or Pr (KW) 140.87 134.25

Total loss (KW) 177.90 162.49

Efficiency (%) 91 94

Cost (USD) 3% decrease

Fig. 11. (Color online) (a) Prototype flux density (Tesla) (b)

FEMM simulation result (Tesla).
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strates systematic accuracy rather than random scatter,

indicating that our geometric corrections and material

property adjustments are functioning as intended. The

mean absolute error of 1.8% across all measurement

points is well within industry standards for electromagnetic

simulation validation (typically < 5% for acceptable

engineering accuracy). Notably, the errors show no bias

toward over-prediction or under-prediction, with approxi-

mately equal distribution of positive and negative deviations.

This balanced error distribution confirms that our Enhanced

2D model does not introduce systematic computational

bias, making it reliable for comparative optimization

studies where relative performance improvements are the

primary concern. The single outlier at measurement point

3 represents a flux concentration region where the 2D

simplification has greatest impact. Despite this limitation,

the overall validation confirms that our model provides

sufficient accuracy for the GA optimization process,

where the algorithm seeks relative improvements rather

than absolute precision. This error analysis validates the

reliability of our Enhanced 2D model for transformer

optimization studies and provides confidence in the

subsequent GA-FEMM optimization results.

4. Conclusion

In conclusion, this work effectively demonstrates the

powerful synergy between Finite Element Method

Magnetics (FEMM) and Genetic Algorithms (GA) in

optimizing the design of three-phase transformers. The

integration of these advanced computational tools resulted

in significant improvements in key areas, including

material usage, cost efficiency, and overall transformer

performance. The optimization process successfully

reduced the amount of copper and core steel required,

leading to substantial cost savings without compromising,

and in some cases even enhancing, the operational

efficiency of the transformers.

These findings highlight the potential for employing

FEMM and GA in cooperation to push the boundaries of

established transformer design approaches. This technique

allows for a more precise and efficient exploration of the

design space, resulting in transformers that are not only

more cost-effective but also better matched with modern

energy-efficiency standards. Although the study found a

modest cost trade-off associated with some design

optimizations, the overall benefits, notably in terms of

reduced material usage and improved performance, much

surpass this disadvantage.

Furthermore, this research highlights the implications of

applying computational optimization techniques to electrical

infrastructure. The findings pave the way for future

studies aimed at further refining the balance between

efficiency, cost, and material savings. The successful

application of FEMM and GA in this context not only

demonstrates their practical utility but also opens up new

avenues for innovation in transformer design and beyond.

Future research will focus on prototype validation and 3D

FEM benchmarking to further verify the optimization

results presented in this study.
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