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This research investigates how to improve transformer efficiency and reduce manufacturing costs by
combining Genetic Algorithms (GA) and Finite Element Method Magnetics (FEMM) analysis. We present a
distinctive approach to optimizing transformer design parameters using GA, with the goal of improving
performance indicators such as energy efficiency while minimizing material costs. The FEMM analysis is used
to simulate and validate the magnetic properties of optimal transformer designs. Our methodology shows
considerable gains in transformer efficiency while also lowering costs, providing a twofold advantage that is
critical for long-term electrical engineering practices. The results show that combining GA with FEMM an
advanced algorithmic design with electromagnetic simulation, can result in more cost-effective and energy-

efficient transformer designs.
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1. Introduction

The promise of optimizing electrical machines and
systems lies in the potential to significantly enhance their
reliability, efficiency, and overall performance, which has
garnered considerable attention in the field of electrical
engineering. Among these systems, three-phase transformers
are indispensable components in power distribution
networks, responsible for stepping voltage levels up or
down and ensuring the efficient transmission of electrical
energy. As global energy demands continue to rise,
optimizing transformer design becomes increasingly
critical, offering the possibility of substantial benefits
such as improved efficiency, reduced operational costs,
and improved system stability and reliability [1, 2].

The endeavor to reduce total losses in transformers is
more than just an academic pursuit; even minor
improvements can yield considerable economic and
environmental benefits. Total loss minimization, a key
goal in transformer design, includes both core losses and
copper losses, which are critical criteria described in
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multiple research studies, industry manuals, and inter-
national laws [3]. There are other transformer losses like
stray losses and dielectric losses. Stray losses may be
caused by the magnetic flux linked to the transformer
tank. Stray losses in a transformer are not considered in
this research due to the heavy computational load
required in FEMM, hence this paper will only cover
losses due to hysteresis and eddy current on the core and
copper losses on the windings of the transformer.

Traditional optimization techniques for transformer
design often involve complex, iterative procedures that
can be computationally intensive and time-consuming,
relying on intricate mathematical models that may not
always capture the full spectrum of real-world operational
conditions. These conventional methods, while effective
to an extent, may fall short in achieving the desired level
of precision and efficiency, particularly when dealing with
the intricate electromagnetic behaviors inherent in trans-
formers [4, 5].

In response to these challenges, this paper presents a
distinctive approach that integrates the Finite Element
Method Magnetics (FEMM) with a Genetic Algorithm
(GA) to optimize the design of three-phase transformers.
The Finite Element Method (FEM) is a powerful
numerical tool widely used in engineering for simulating
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physical phenomena, providing a detailed analysis and
visualization of electromagnetic fields within electrical
devices. FEMM (Finite Element Method Magnetics), a
specialized implementation of FEM for magnetic field
analysis, offers an in-depth understanding of the electro-
magnetic performance of transformers, enabling designers
to predict and fine-tune performance parameters with
high accuracy [6]. The Genetic Algorithm, inspired by the
process of natural selection, is an optimization technique
that mimics the principles of biological evolution,
including selection, crossover, and mutation [7, 8]. Unlike
some other optimization techniques that might require
longer convergence times or more computational resources,
the GA-FEMM approach has been shown in preliminary
assessments to reduce the computational burden, thus
streamlining the entire optimization cycle. The Genetic
Algorithm (GA) is thought to be more effective than other
optimization techniques for a variety of reasons, parti-
cularly when used with the Finite Element Method
Magnetics (FEMM) in transformer construction. GA is
recommended because it successfully searches large and
complicated design spaces for optimal solutions, which is
critical in transformer design, where various parameters
and their interactions have a substantial impact on
performance. Furthermore, GA can be efficiently
parallelized, enabling it to perform large simulations such
as those required for electromagnetic analysis in trans-
formers [9]. This parallel capacity considerably saves
calculating time, making it an attractive option in
industrial applications where time and resource efficiency
are critical. These features make GA ideal for the integ-
rated GA-FEMM technique used in transformer optimi-

zation, which provides a reliable and adaptable strategy
for increasing transformer efficiency and performance
while minimizing losses.

The objective of this study is to demonstrate how the
integration of FEMM and GA can lead to the optimal
design of three-phase transformers, with a focus on
improving operational efficiency, reducing material costs,
and ultimately contributing to the development of more
sustainable energy management practices.

This paper is organized to guide the reader through a
systematic exploration of our re- search. We begin with
the methodology section that explains the computational
techniques used to optimize transformer design through
the integration of GA with FEMM. Following this, the
results and discussion section presents findings from our
simulations, demonstrating how various design modi-
fications impact transformer efficiency and performance,
and interprets these results, considering their implications
for both transformer design practice and potential areas
for further research. Finally, the Conclusion summarizes
the study’s contributions to the field of transformer design
optimization, highlighting the practical benefits and
suggesting directions for future research.

2. Methodology

In this research, we develop a methodology that
intricately combines Finite Element Method Magnetics
(FEMM) with Genetic Algorithms (GA) to elevate the
design standards of three-phase transformers. Our approach
begins with the establishment of a baseline design for the
transformer, where essential parameters such as core
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Fig. 1. (Color online) Flowchart of GA+FEMM Optimization.



Journal of Magnetics, Vol. 30, No. 3, September 2025

material, geometry, winding arrangement, and insulation
types are meticulously defined. This initial design serves
as the groundwork upon which our optimization process
builds.

Following the initial setup, we employ FEMM software
to conduct comprehensive electromagnetic simulations.
These simulations are critical as they provide a deep dive
into the baseline characteristics of the transformer,
highlighting areas such as magnetic flux distribution and
core saturation patterns. By understanding these found-
ational aspects, we identify potential inefficiencies and
areas where improvements are paramount. The precision
of FEMM is crucial, as it provides deep insights into the
distribution of electromagnetic fields, core losses, leakage
inductance, and overall efficiency across various loading
conditions [10, 11]. These detailed simulations allow for a
thorough analysis of how the transformer will perform
under real-world conditions, enabling designers to pinpoint
areas for improvement and make informed decisions
during the optimization process.

Using the insights gathered from FEMM simulations,
the Genetic Algorithm takes the front stage in refining
transformer design. The GA iteratively adjusts essential
design parameters like as core shape, lamination thick-
ness, and winding configurations to maximize transformer
efficiency and reduce material use. GA is a robust
optimization technique inspired by the principles of
natural evolution, where design candidates (solutions)
undergo selection, crossover, and mutation processes to
evolve toward optimal solutions [12]. Each iteration of
the GA process includes complex selection, crossover,
and mutation phases, all guided by fitness evaluations
based on the initial and ongoing FEMM investigations.
This dynamic and responsive optimization approach is
critical for successfully navigating the broad design
space, ensuring that each tweak contributes favorably to
the overall design objectives.

The strong interplay between GA optimization and
FEMM validation creates a constant iterative feedback
loop. To validate the effectiveness of each alteration,
optimized designs are cycled through FEMM simulations
again. This loop continues until the incremental gains in
efficiency and cost reductions reach a plateau, suggesting
convergence toward an ideal design configuration. Once a
potentially optimal design is identified, we move to the
prototype testing phase. This stage is crucial for bridging
the gap between theoretical simulations and tangible
operational performance.

By meticulously integrating advanced simulation tools
with evolutionary optimization techniques, our meth-
odology not only enhances the performance of three-
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phase transformers but also ensures these improvements
are achievable within practical, real-world constraints.
This approach allows for a sophisticated exploration of
transformative solutions that meet the modern demands of
efficiency and cost-effectiveness in transformer manu-
facturing. Fig. 1. depicts the flowchart for the meth-
odology.

2.1. Transformer Specification

A full description of the transformer's properties is
required to improve its efficiency and cost-effectiveness
by integrating genetic algorithms with finite element
method magnetics (FEMM) analysis. The detailed
specification includes numerous key components that are
critical for future analysis and optimization processes.

The prototype transformer being studied is a com-
mercial three-phase unit intended for medium to high-
voltage applications. This option reflects the typical
requirements of modern power distribution networks,
which prioritize efficiency and reliability. The core
material used is high-grade Cold-Rolled Grain Oriented
Steel (CRGO) and its properties are shown in Table 1 and
Fig. 2 shows the B-H Magnetization Curve Validation
comparing prototype measurements with FEMM simulation
results. The excellent agreement (maximum error 2.1%)
validates our CRGO material model implementation. The
operating points at 1.48T (prototype) and 1.50T (FEMM)
demonstrate accurate flux density prediction under
nominal conditions. It is known for its exceptional
magnetic characteristics and reduces core losses, an
important component in transformer performance. In
transformer design, core material selection is crucial as it
directly influences efficiency and effectiveness in its
operation. CRGO is one of the frequently used magnetic
materials due to its excellent magnetic properties,
especially high magnetic permeability and low power
loss, which play a vital role in high-performance trans-

Table 1. Magnetic Characteristics of CRGO Material Used in
FEMM Analysis from Non-linear B-H Curve Model.

Property Symbol Values
Relative permeability (linear) L 55,000
Relative permeability (linear) Hry 55,000
Maximum B-H curve angle D 2.85°
Coactivity H. 0 A/m
Electrical conductivity o 4.8221 MS/m
Lamination thickness - 0.27 mm
Lamination fill factor - 0.97
Number of strands - 0
Strand diameter - 0 mm
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Fig. 2. (Color online) B-H Magnetization Curve Validation

comparing prototype measurements with FEMM simulation

results.

formers. These inherent qualities, whereby a significant
improvement in the transformer efficiency due to a
reduction of the core losses is achieved, form the basis for
adopting CRGO in the transformer model in the present
study.

A distinctive feature of CRGO is its anisotropic magnetic
properties, meaning that its magnetic characteristics vary
depending on the direction of magnetization. This
anisotropy is particularly relevant to transformer core
design because it affects how the core handles magnetic
flux under operational conditions. The orientation
distribution function (ODF) plays a pivotal role in
characterizing the anisotropy of these materials. It
accounts for the distribution of crystallographic orientations
within the steel, which directly impacts its magnetic
properties. The ODF method has been successfully
applied to CRGO steels, offering a robust framework for
predicting and understanding their behavior under various
magnetic orientations [13]. Central to the quantification
of magnetic anisotropy using the ODF is the ability to
determine the magnetic properties along different
directions with respect to the rolling direction (RD). For
instance, by considering only a few measurement
directions, specifically 0°, 45°, and 90° relative to the RD
(Rolling direction). It is possible to effectively predict
magnetic behaviors across all angles. This is captured in
the mathematical relationship which models the magnetic
property A as a function of the angle ¢:

A=Ay + A cosQep) + A, cos(4¢) (1)

Where A,, A,, and A, are coefficients derived from
measurements at these principal directions. These coeffi-
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cients are crucial for describing the average anisotropic
properties and their deviation from isotropy. This is
discussed in more detail in [14]. This mathematical model
facilitates a more nuanced understanding of the
anisotropic magnetic properties and enables the design of
more efficient magnetic circuits by predicting magnetic
properties for arbitrary angles with respect to the RD.

Misalignment of the core in these regards increases the
losses as the flux will face greater magnetic resistance. In
[15] the author of the paper describes the measurements
of electrical steel. The results show dependency between
the anisotropy angle and the magnetization curve, as well
as core losses. In our methodology, the examined core
was made with lamination at 45° as shown in Fig. 4.

In our simulations and design optimizations, a detailed
model of the CRGO material properties, including its
anisotropic performance, is considered. Therefore, para-
meters in the FEMM model are carefully tuned to reflect
the anisotropic aspect of CRGO to realize more realistic
and representative real-world simulations. By integrating
the Genetic Algorithm (GA) with our FEMM simulations,
we iteratively refine the transformer's design to reduce
losses, particularly focusing on optimizing the core's
geometry and material distribution to handle anisotropic
effects efficiently. This iterative process allows for the
detailed exploration of various design configurations,
identifying optimal arrangements that specifically reduce
the adverse impacts of anisotropy on transformer
performance.

Copper conductors are employed for their low resistance
and great conductivity. The arrangement of these windings
is critical since it affects the transformer's impedance,
voltage regulation, and efficiency. Each winding is
meticulously calculated to create the best possible cost-
performance balance, maximizing material utilization
while ensuring that the transformer satisfies the stated
energy efficiency standards.

The transformer's operational specifications include its
rated power capacity, which is determined based on the
expected load conditions. Under typical operating condi-
tions, the three-phase transformer is designed to function
at approximately 80% of its nominal power capacity,
equivalent to 120 MVA. This operating point is chosen in
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Table 2. The Specification of Three-phase Transformer Proto-

type.
Parameters Specification Values
Power 150MVA
Frequency 50Hz
Rating Voltage (HV/LV) 132/14.1KV
Current (HV/LV) 655/3537 A
Number of turns (HV/LV)  432/80
Material Copper
. Density 8300 Kg/m?
Windings Relative Permeability 1
Resistivity 1.724e-008 ohms.m
Material CRGO
Permeability 55,000
Core .
Resistivity 2.07e-7 ohms.m
Magnetization 1.5T
Height 3815 mm
Length of yoke 3610 mm
Magnetic Core Section of columns 820 mm
Section of yoke 820 mm
Thickness of core 816 mm
Distance between legs 1395 mm
Height 1935mm
. Inner radius 571.5 mm
HV windings Outer radius 666.5 mm
Width 95 mm
Height 1935 mm
L Inner radius 455 mm
LV windings Outer radius 525 mm
Width 70 mm
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Table 3. Transformer Prototype and FEMM Simulation.

Pareameters Prototype Femm
Total-loss (KW) 187.45 185.70
B(T) 1.48 1.50

Efficiency (%) 90.30 91.43

Fig. 5. (Color online) Altair Flux 3D design of the Trans-
former’s prototype.

this study to optimize efficiency and reliability, while also
accommodating expected variations in load within safe
operational limits. Voltage levels for both primary and
secondary sides are defined according to the requirements
of the power distribution network. Additionally, the
efficiency parameters are set to meet or exceed current
industry standards, with specific goals for reducing load
and no-load losses.

Table 2. Shows the specification and values of the
prototype transformer’s parameter where HV represents
high voltage windings and LV represents low voltage
windings, Table 3. Compares prototype and FEMM
simulation and Figure 5 shows the Altair Flux 3D design
of the Transformer’s prototype

2.2. Considerations and Justification for Model Sim-
plifications

In the pursuit of optimizing transformer design through
the integration of Genetic Algorithms (GA) and Finite
Element Method Magnetics (FEMM), certain simplifications
were deemed necessary to balance the depth of analysis
with computational feasibility. This research primarily
employed 2D simulations and excluded detailed
considerations of thermal effects and stray losses. While
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these decisions were driven by the need to manage
computational resources efficiently, they introduce
specific limitations that are important to acknowledge and
understand.

The exclusion of 3D modeling in this study is primarily
due to the significant computational resources required
for such detailed analyses, which are not always feasible
within the constraints of academic research settings.
Although 3D models provide a more comprehensive
representation of physical phenomena, particularly in
capturing complex magnetic interactions and flux leakage
effects, the 2D approach allows for more extensive
parametric studies and iterative optimizations due to its
lower computational demands. It is recognized that this
simplification might limit the accuracy in predicting the
magnetic flux distribution and localization of flux
concentrations which are better represented in a three-
dimensional space.

Further, the thermal effects and stray losses, which can
notably influence transformer performance, were not
explicitly modeled. Stray losses, often caused by flux
leakages impacting other conductive components of the
transformer, contribute to overall efficiency losses and
heat generation. Similarly, thermal modeling, which could
provide insights into the heat distribution and its impact
on transformer materials and longevity, was omitted. The
absence of these considerations was a calculated decision
to focus the computational efforts on optimizing core
geometries and material properties directly influencing
hysteresis and eddy current losses which are more critical
to the primary objectives of enhancing efficiency and
cost-effectiveness.

The simplifications made in this study are justified by
the significant computational load that detailed FEMM
and GA require. By focusing on more manageable model
complexity, the study benefits from increased computational
speed, allowing for broader optimization studies involving
numerous design iterations. This approach aligns with the
research aim to demonstrate the potential of GA and
FEMM for efficient transformer design, providing a
foundation upon which more detailed future studies could
build.

2.3. Enhanced 2D Simulation and Integration Tech-
niques for Transformer Design Optimization

In transformer design optimization, accurately modeling
the electromagnetic properties of three-dimensional objects
such as transformer cores in a two-dimensional (2D)
simulation environment poses unique challenges. This
section details the methodologies employed to address
these challenges, focusing on geometric adjustments for
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2D simulations, the integration of FEMM with MATLAB
using Lua scripts, and the consideration of material
properties in simulations.

» Geometric Adjustment for 2D simulation

Finite Element Method Magnetics (FEMM) models
electromagnetic processes in two dimensions, a constraint
that necessitates careful geometric adjustments when
representing inherently three-dimensional components
like transformer cores. In standard transformer designs,
the core typically comprises limbs and windings that are
not easily depicted in 2D. For instance, the transformer's
limb, which may physically exhibit a three-teeth cross-
sectional shape, must be simplified for accurate 2D
simulation [16, 17]. While FEMM provides a robust
platform for electromagnetic simulations, the geometric
and material adjustments required for converting 3D
objects into a 2D format are essential for achieving
accurate results. Computation efficiency and accuracy call
for a balance in transformer design optimization, hence
the use of 2D modeling in simulations through finite
Element Method Magnetics or FEMM. Transformers are
naturally three-dimensional devices, but 3-D simulations
are immensely costly computationally, particularly for
iterative algorithms like GA. In turn, it is so important to
transition to the 2D model, despite the simplifications that
are present, for its ability to provide a much more
dynamic and responsive process of design [18]. We do
this by projecting the geometrically complex structure of
a transformer's core and its windings onto a plane, using
an approach that gains simplicity based on the assumption
of uniformity along an axis perpendicular to the plane of
analysis. In practice, what this means is to develop a
model, ignoring variations that would take effect concerning
magnetic flux distribution in the third dimension. Such a
simplification is justified by the significantly reduced
computational demands that permit more extensive
investigation of design variables within feasible time
constraints. Material properties also require careful
adjustment to ensure that the behavior in the 2D model
reflects real-world 3D characteristics. Key properties such
as magnetic permeability and electrical conductivity are
adapted to account for the reduced dimensionality. For
example, for nonlinear problems, the hysteresis lag is
assumed to be proportional to the effective permeability.
At the highest effective permeability, the hysteresis angle
is assumed to reach its maximal value of ¢,,,. as shown
in (2).

0(8) = (LB, @

eff, max
Where ¢,(B) is the hysteresis angle or loss angle between
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the magnetic field H and the magnetic flux density B as
represented in FEMM. z,4(B) is the effective permeability
at a given magnetic flux density and g, is the
maximum effective permeability that the material can
achieve.

In the 3D physical model of the transformer, the core is
typically designed with rounded edges. These rounded
edges help in reducing sharp magnetic field gradients that
can lead to inefficiencies such as increased hysteresis and
eddy current losses. However, when approximating this
model in a two-dimensional Finite Element Method
Magnetics (FEMM) simulation, these three-dimensional
rounded edges are represented as sharp, rectangular edges.
This simplification is necessary due to the constraints of
the 2D simulation environment, which does not easily
accommodate the complex curvature of rounded edges.
This adjustment in the model helps streamline the
simulation process while maintaining an acceptable level
of accuracy in the analysis of magnetic flux distribution
within the core. These changes in geometry and materials
cannot be ignored in the simulation, they may bring
disparities in the magnetic flux distribution that was
estimated and the loss calculations with respect to a full
3D study. These geometric simplifications are crucial for
ensuring that the 2D model accurately reflects the
magnetic properties of the core, despite the limitations
imposed by the two-dimensional analysis environment of
FEMM.

* Integration of FEMM with MATLAB Using Lua Script

To enhance the capabilities of FEMM and enable more
dynamic and complex simulations, a Lua scripting
interface has been used to integrate FEMM with
MATLAB. This integration leverages MATLAB’s powerful
computational abilities, allowing for advanced data
manipulation, parameter control, and automation of the
simulation process. The integration allows for seamless
communication between FEMM and MATLAB. By using
Lua scripts, we programmatically adjust simulation
parameters directly from MATLAB, thus streamlining the
process of model configuration and enabling dynamic
changes based on real-time analysis results. This method
of integration is especially beneficial for managing
complex simulation workflows that require frequent
adjustments of parameters to optimize performance
criteria. For example, during the transformer's no-load
simulation at nominal voltage, the Lua script adjusts the
currents in phases B and C to correspond accurately with
the magnetic flux distributions caused by the applied
voltage. Meanwhile, phase A’s current is elevated to its
peak value as part of the scenario being tested. This kind
of precise control over simulation parameters directly

-351-

from MATLAB enhances our ability to model and
analyze different operational conditions meticulously. It
allows us to observe the effects of various electrical loads
on the magnetic flux distribution and core saturation in
detail. Furthermore, this interconnected setup between
MATLAB and FEMM through Lua scripting extends
beyond simple parameter adjustments. It enables the
implementation of complex algorithms developed in
MATLAB to control and optimize the simulation pro-
cesses in FEMM, making it possible to automate iterative
tasks, optimize design parameters, and systematically
explore the impact of different design alterations on
transformer performance. The ability to programmatically
control and automate these simulations from MATLAB
significantly increases the efficiency and accuracy of our
design process, helping us develop transformer models
that are not only optimized for performance but also
robust and reliable under a variety of electrical operating
conditions. This integration thus serves as a cornerstone
for advancing transformer design, providing a sophisticated
toolset that leverages the strengths of both FEMM's
detailed electromagnetic simulation capabilities and
MATLAB?’s robust computational and algorithmic prowess.
The result is a highly effective simulation environment
where complex transformer designs can be refined and
validated with precision, ensuring that the final products
are both innovative and aligned with the practical
demands of energy systems.

*» Material Properties and Simulation Settings

A critical aspect of FEMM simulations is the accurate
representation of material properties, particularly the iron
core magnetization curve. The precision of the simulation
outcomes is significantly influenced by the correct
consideration of the lamination fill factor, set at 0.97 in
this study. The fill factor represents the proportion of the
core volume filled by the magnetic steel, with the
remainder consisting of air gaps and insulation. For
example, if you had a lamination in which the iron was
12.8 mm thick, and the insulation was 1.2 mm thick then
the fill factor would be:

12.8

FillFactor = m

=0.914 3)

The accurate modeling of these material properties in
FEMM is not merely a matter of inputting values into a
simulation program; it involves a comprehensive under-
standing of how these properties interact with the
electromagnetic fields during operation. For instance, the
magnetization curve must be carefully aligned with
empirical data from manufacturer datasheets or derived
from laboratory measurements to ensure it accurately
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reflects the real-world behavior of the core material under
various loading conditions.

The integration of FEMM with MATLAB using Lua
scripting significantly enhances the accuracy and flexibility
of these simulations, offering a comprehensive set of tools
for detailed analysis and optimization of transformer
properties. This methodology not only mitigates the
inherent limitations of FEMM's two-dimensional frame-
work but also harnesses MATLAB's computational
strengths to facilitate more precise predictions and design
modifications.

2.4. Importance of Loss Angle in Reducing Trans-
former Iron Loss in FEMM

When calculating losses in transformers, particularly
iron losses, the consideration of the loss angle is of
paramount importance. The loss angle, often denoted by
the symbol o, represents the phase difference between the
magnetic field (H) and the magnetization (M) in magnetic
materials [19]. This angle plays a critical role in deter-
mining the extent of energy dissipation within the
material, particularly in the form of hysteresis losses.

In many magnetic materials, the default loss angle is
set to zero in simulation tools like FEMM, which implies
that these materials do not contribute to hysteresis losses.
However, this is not always the case in real-world
applications [20], which talks about the use of loss angle
in detail in the determination of iron loss in a three phase
transformer and was referenced in this text for the
determination of the loss angle. For example, in FEMM
software, 1006 Steel which is a commonly used magnetic
material, has a predetermined loss angle of 20 degrees.
This non-zero loss angle indicates that there is a
measurable phase difference between the magnetic field
and the magnetization, leading to hysteresis losses. In our
study, we utilized the "loss angle," a mathematical tool, to
facilitate the calculation of loss density in FEMM [21].
This method, similar to Bertotti's model, offers simplicity
in implementation and was chosen for its ease of use in
FEMM simulation.

The loss angle is crucial because it directly influences
the hysteresis loop of the material. The hysteresis loop
represents the relationship between the magnetic field
strength (H) and the magnetic flux density (B) over a
complete cycle of magnetization. The area enclosed by
this loop corresponds to the hysteresis loss per unit
volume, also known as loss density. This loss density can
be mathematically expressed as in (4):

Wh = {; HdB 4)
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Where dB represents a small variation in magnetic flux
density, and H is the magnetic field strength. The integral
is taken over a full hysteresis loop cycle, capturing the
total energy dissipated as heat within the material during
one complete magnetization cycle. A larger loss angle
typically correlates with a broader hysteresis loop, which
in turn signifies greater energy dissipation per cycle [22].
This increased energy dissipation directly translates to
higher hysteresis loss density, making the accurate
consideration of the loss angle essential for precise loss
calculations. Fine-tuning this parameter ensures that the
simulations accurately reflect the real-world behavior of
the material, leading to more reliable predictions of iron
losses. Understanding and incorporating the loss angle
into transformer design is thus a crucial step in optimizing
efficiency and minimizing energy losses in transformers.
By fine-tuning the loss angle, the research aims to align
the phase difference to a point where these losses are
minimized. This optimization process involves adjusting
the physical properties of the transformer, such as the
lamination thickness in the core and the type and layout
of the windings. Each of these adjustments is targeted to
reduce the inherent resistance and reactance, thereby
tightening the loss angle.

2.5. Role of Complex Permeability in Determining the
Loss Angle

In this section, we explore the role of complex perme-
ability in determining the loss angle and how this affects
the minimization of losses in transformers to maximize
efficiency. The concept of complex permeability, integral
to transformer design, includes both real and imaginary
components that significantly influence the transformer's
operational efficiency. Complex permeability, denoted as
i = — ju", where u' and y" represent the real and
imaginary parts, respectively, plays a pivotal role in
determining the magnetic response of the core material
under alternating magnetic fields. The real part 4 primarily
influences the magnitude of the magnetic flux density
produced within the core, while the imaginary part u”,
often related to the core loss resistance, influences the
energy dissipation within the transformer.

Eun S. Lee [23] investigated the complex permeability
of magnetic materials in a simple test prototype. In his
research, the inductor model-based calculation methodo-
logies for complex permeability are suggested to find the
core loss characteristics. Fig. 6. Shows the simplified
circuit of the inductor model used as explained in the paper.

From the experiment in [23] the real and complex
permeability is given by;



Journal of Magnetics, Vol. 30, No. 3, September 2025

.

Ie<0e|

v, <0

Fig. 6. Simplified equivalent circuit of the inductor model.
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Where A4, and /, are the magnetic areas and effective
magnetic path length respectively. L.(B) is the complex
inductance, r,, is the resistance associated with the copper
windings and 7., is the core loss resistance.

From equation (6) it can be seen that the real perme-
ability 4/, is proportional to the inductance L.(B) and the
imaginary permeability is proportional to the core loss
resistance r,,.

The loss angle 6, crucial in transformer design, is
determined by the ratio of the imaginary permeability to
the real permeability given in (7). This angle is indicative
of the phase difference between the applied voltage and
the resultant magnetic flux, and it directly correlates with
the efficiency of the transformer: a smaller loss angle
means that less energy is wasted as heat, thereby increas-
ing the transformer's efficiency.

(tan(6) = p"/u") %

To minimize losses, adjusting the loss angle to an
optimal value where the resistive losses (primarily influenced
by u") are minimized is essential. This optimization often
involves selecting materials with specific permeability
characteristics that align with operational frequencies and
expected load conditions. For example, materials with a
lower 4" at the operating frequency of the transformer
can reduce eddy current and hysteresis losses, two major
contributors to energy inefficiency in transformers.

2.6. Genetic Algorithm (GA)
In the pursuit of increasing transformer efficiency and
cost-effectiveness, the Genetic Algorithm (GA) emerges
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as a critical computational tool designed to optimize the
delicate design parameters of transformers. This part
focuses on the integration and implementation of GA
within the context of our research.

Genetic algorithms, which are based on the principles
of natural selection and genetics, provide a reliable
technique for dealing with difficult optimization problems
in engineering design [24]. In transformer design, GA is
used to optimize parameters that have a substantial impact
on efficiency and cost, such as core material, shape, and
size. The selection of these parameters has a direct impact
on the transformer's energy losses, including core and
copper losses, and their optimization is critical for improving
overall performance.

The GA follows a cycle of selection, crossover, and
mutation processes. It starts with a set of potential
solutions, each of which represents a possible transformer
design recorded as a string of genes. Each member of the
population is evaluated using a fitness function designed
expressly to determine the transformer's efficiency and
cost-effectiveness. This fitness function incorporates the
results of preliminary FEMM simulations, providing a
realistic assessment of how well each design meets the
specified efficiency criteria under operational conditions.
For our study, the GA was configured with a population
size of 300 to ensure a diverse genetic pool. This size
facilitates a broad search of the design space, increasing
the probability of finding a near-optimal solution. The
algorithm was allowed to evolve over 300 generations,
providing sufficient iterations for the solutions to mature
and converge toward optimal design configurations. Our
implementation leverages MATLAB’s Genetic Algorithm
Toolbox, which facilitates sophisticated handling and
automatic estimation of GA parameters, tailored to the
specific needs of the problem at hand. The calculation
time for one generation varies depending on the complexity
of the fitness function, the number of design parameters,
and the size of the population. For our setup, with a
population size of 300, each generation requires approxi-
mately 2 to 5 minutes to compute using standard comput-
ational resources. The toolbox’s robust computational
capabilities allow for dynamic adjustments and real-time
analysis, making it an invaluable asset in managing the
iterative nature of transformer design optimization.

We address the optimization of three-phase transformers
with a multifaceted strategy concentrating on two important
objectives: reducing total manufacturing costs, and
maximizing the transformer's efficiency. Table 4 presents
the design variables and description and Fig. 7 depicts the
2D representation of the three-phase transformer in
FEMM.
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Table 4. design variables of the transformer.

Primary Design Variables Description

Rs (X1) Radius of LV winding (mm)

Rp (X2) Radius of HV winding (mm)

hp (X3) Height of HV windings (mm)
hs (X4) Height of LV windings (mm)

ts (X5) Thickness of LV winding (mm)
tp (X6) Thickness of HV windings (mm)
Np (X7) Number of turns of HV winding
Ns (X8) Number of turns of LV winding
Js (X9) Current density of LV (A/mm?)
Ip (X10) Current density of HV (A/mm?)
J(X11) Loss angle

Ww (X12) Window width (mm)

Wh (X13) Window height (mm)

T (X14) Lamination of core (mm)

By holistically addressing these objectives, the GA is
capable of producing designs that achieve an optimal
balance between cost and performance. The iterative
nature of the algorithm, combined with its adaptive
parameter adjustments and guided selection process,
ensures that the resulting transformer designs are not only
theoretically optimal but also practical and manufacturable.
The ability to adaptively evolve the design parameters
based on real-time fitness evaluations allows for a more
efficient search for the global optimum, ultimately leading
to transformers that meet stringent efficiency and cost
criteria.

2.6.1. Objective Function Definition

The definition of the objective function is an essential
component of any optimization task, including the use of
Genetic Algorithms (GA) in transformer design. The
objective function in the context of this study is a mathe-
matical formulation that contains the key performance
indicators (KPIs) crucial to the design of efficient and
cost-effective transformers.

A. Minimization of Energy Losses

The first component of the objective function aims to
reduce total energy losses, including core and copper
losses. Core losses are primarily caused by hysteresis and
eddy currents, whereas copper losses result from winding
resistance. These losses not only impact the transformer’s
efficiency but also its operational costs and heat
generation.

* Copper Loss:

According to [25] the copper loss in LV (or secondary)
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Fig. 7. (Color online) Geometry of transformer.

winding is denoted by “wsCu (in KW)” and therefore it
can be mathematically expressed with respect to the
primary design variables shown in Table 4.

wsCu = rho(1 + ecfs)(Js)* Vs ®)

Where “rho” is the copper resistivity in (ohm-m/mm?),
“ecfs” is the eddy current factor which is due to stray flux
and depends on the type of wire or cable making up the
winding and Vs is the copper volume in LV winding and
can be expressed as

Vs = (3pfs x 2pi x Rihty) ©

Where pfs is the fill factor of the secondary winding
(specified by the user)

Putting (9) in (8) the copper loss for the low-voltage
winding becomes

wsCu = rho(1 + ecfs) (J,Y'(3pfs x 2pi x Rihgt;) (10)

Similarly the total copper loss in in HV (or primary)
winding denoted by “wpCu (in KW)” is represented by

wpCu = rho(1 + Ke)(Jp)2 V, (11)
Where V, is the copper volume and is given by;

V= (3pfs * 2pi x Rihgt,) (12)
Therefore, we can write:

wpCu = rho( 1 + ecfs)(J,Y’(pfs x 2pi x Rht)  (13)
Therefore, the total copper loss is:

Total copper loss = wsCu + wpCu (14)

* Core Loss:
The core loss is comprised of both eddy current loss
and hysteresis loss which is given as:
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P.=K, f*B,*V (15)
Py, =K, fB,"V (16)

Where P, and P, are the eddy and hysteresis loss and n is
the Steinmetz constant. t is the core lamination thickness
(0.27 mm), f is the frequency, V is the Volume of the
core, K1 and K2 are the material coefficients.

Therefore,

Total core loss = P, + P, (17)

B. Cost Reduction

The second component of the objective function is to
reduce the cost of materials and production processes.
This entails maximizing the usage of materials that
provide great performance without incurring excessively
high costs. The function examines the cost of core materials,
winding materials, and other construction components.

Calculating the weight of both primary and secondary
winding coil:

L,=nm [dw + WT} (18)

Where Lmt is the mean length per turn for both primary
and secondary coils and d, is the diameter of the
windings.

Therefore, the weight of the primary coil is given as:

Weight, = p.opai Ly N, (19)
. Total weight =Weight, + Weight, (20)

Where a, is the cross-section area of the copper coil. The
cost is based on the current market prices or specific
supplier prices:

C.. = price per unit weight x total weight 21
Where price per unit weight is the cost per kilogram or
pound of copper.

C. Calculating the weight of the iron core in the
transformer

Weight of iron core = iron volume % iron density (22)

Volume of core = L,,A; (23)

L,, = total length of mean flux path

A; = iron area

Lm =2[Ww +d,] + 2[Wh + a] 24)

Weight of core = L,,4;p; (25)
Where p, is the density of steel (7.65 g/cm’), d, is the
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depth of the core and a is part of the vertical dimension
that completes the flush path circuit around the core.

The cost is based on the current market prices or
specific supplier prices:

Cyeer = price per unit weight x weight of core (26)

2.6.2. Constraint Handling in Transformer Design
Optimization

When optimizing three-phase transformer designs,
numerous restrictions must be considered to guarantee
that the final design fits specified electrical and physical
requirements. These constraints are required not just to
preserve the transformer's functioning and dependability,
but also to comply with practical production limits and
regulations. To meet these criteria, we use a number of
inequality constraints between design parameters, as well
as interval constraints that define allowed ranges for
specific important variables.

The inequality constraints in this optimization process
ensure that the relationships between different design
parameters adhere to necessary electrical characteristics
and physical restrictions. These constraints are crucial for
maintaining the integrity and performance of the trans-
former within the defined operational limits. The
constraints used in the study are expressed as follows:

Apin<ALA, 4 27

H. o SWy+2t,, <h.,. (28)

Lope 2L+ b <liore (29)
Where:

Apin and A, represent the minimum and maximum
allowable values for the core cross-sectional area. This
constraint ensures that the core's cross-sectional area stays
within the specified limits, which is crucial for achieving
the desired magnetic flux density and ensuring the core
does not become saturated under normal operating
conditions.

H... and h,,. denote the lower and upper bounds for
the core height. This constraint ensures that the height of
the core, including the windings and the insulation layers,
remains within the predefined physical limits. The term
Wy + 2t refers to the height of the windings plus the
maximum allowable insulation thickness on both sides,
ensuring that the transformer can be efficiently assembled
and remains structurally sound.

Leore and [, are the lower and upper limits for the core
length. The expression 2L, + t,,, represents the length of
the core considering the mean length of the magnetic path
(L,) and the maximum insulation thickness. This
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constraint ensures that the length of the core is within the
specified limits, which is important for maintaining the
desired magnetic path length and ensuring that the
transformer fits within the allotted physical space.

The incorporation of these constraints is critical to the
effectiveness of the optimization process. They act as
boundary criteria for the Genetic Algorithm while it
explores the design space, guaranteeing that the solutions
generated are not only optimal in terms of performance
and cost, but also adhere to physical and electrical
constraints. By following these criteria, the algorithm can
generate transformer designs that are both theoretically
and practically feasible.

3. Results and Discussion

The integration of Finite Element Method Magnetics
(FEMM) with a Genetic Algorithm (GA) in this study
yielded significant advancements in the optimization of
three-phase transformer designs, demonstrating the effec-
tiveness of combining advanced simulation tools with
evolutionary algorithms to achieve superior performance
and cost-efficiency. One of the most notable outcomes
was the substantial reduction in the use of copper and
core steel components. These material reductions directly
contributed to a decrease in overall costs, as shown in
Fig. 8, without compromising the operational efficiency
of the transformers.

The reduction in material usage was achieved through
the GA's iterative process, where design parameters were
continuously refined based on performance metrics from
FEMM simulations. This allowed the algorithm to identify
optimal configurations that minimized material bulk
while ensuring the core and windings maintained their

aop 2100
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Fig. 8. Cost across generations.
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Fig. 9. Efficiency across generations.

structural and functional integrity. This result highlights
the GA's ability to navigate complex trade-offs between
material savings and electrical performance, ensuring cost
reductions did not come at the expense of efficiency.

Efficiency improvements were another significant
achievement, with optimized transformer designs consistently
outperforming prototypes in terms of operational efficiency,
as depicted in Fig. 9. These gains were primarily due to
precise adjustments in the positioning and sizing of the
core and windings, which were iteratively optimized by
the GA. The enhanced efficiency resulted from reduced
core and copper losses, major contributors to transformer
inefficiency. By fine-tuning the magnetic circuit and
optimizing the winding configuration, the GA minimized
these losses, leading to transformers that operate more
efficiently under typical load conditions. This improvement
is particularly important for energy savings and long-term
operational costs, as higher-efficiency transformers contribute
to lower energy consumption and reduced expenses over
the transformer's lifespan.

Figure 8 and 9 illustrate the outcomes of the same
optimization run conducted using MATLAB simulations.
These figures collectively demonstrate the evolution of
cost and efficiency metrics over successive generations,
providing a comprehensive view of the optimization
process and its results. The results also revealed a strong
correlation between the total cost minimization strategy
and the reduction in material utilization, indicating that
the optimization process was effectively applied across
multiple facets of transformer design. The GA's ability to
simultaneously reduce material costs and enhance efficiency
showcases its robustness in addressing complex, multi-
objective optimization problems. By integrating cost and
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Fig. 10. (Color online) (a) FEMM representation of the iron
loss (b) FEMM representation of the copper loss.

efficiency objectives, the GA ensured that the final
designs were both cost-effective and high-performing, a
critical balance in modern transformer design where
reducing costs must align with maintaining or improving
operational efficiency.

Overall, the successful application of FEMM and GA in
this study illustrates the potential for these tools to
revolutionize transformer design, enabling the creation of
transformers that are both economically and operationally
superior to traditional designs. This methodology could be
extended to other areas of transformer design, including the
optimization of insulation systems, cooling mechanisms,
and overall structural design.

The GA-optimized transformer has a total loss reduction
of 162.29 KW. However, its efficiency grew by 4.4
percent. Fig. 10a shows the post-processed view of the
value of the iron loss gotten in FEMM after optimization
and Fig. 10b shows the post-processed asymmetric view
of the transformer core to find the copper loss. Additionally,
the cost savings are reported in Table 5 and also Fig. 11
validates the spatial accuracy of our Enhanced 2D FEMM
model through magnetic flux density distribution comparison.
The simulation results (b) closely match the prototype
measurement pattern (a), with correlation coefficient R? =
0.987, confirming that our geometric adjustments and
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Table 5. Comparison between transformer prototype and ga-
femm method.

Variables Prototype GA FEMM
Bmax (Tesla) 1.48 1.53
NLL or Pnl (KW) 3745 28.24
LL or Pr (KW) 140.87 134.25
Total loss (KW) 177.90 162.49
Efficiency (%) 91 94
Cost (USD) 3% decrease
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Fig. 11. (Color online) (a) Prototype flux density (Tesla) (b)
FEMM simulation result (Tesla).

material property implementations accurately represent
the physical transformer behavior.

Figures 10a, and 10b stem from targeted modifications
tailored for specific simulation analyses using Finite
Element Method Magnetics (FEMM), unlike Fig. 7 which
depicts the initial transformer model with both primary
and secondary windings, representing the full operational
setup. Fig. 10a, designed for iron loss analysis, excludes
the secondary winding to eliminate its influence and focus
solely on the primary winding. This simplification
enhances the clarity of iron loss calculations. Conversely,
Fig. 10b is optimized for copper loss analysis using an
asymmetric model that reduces computational demands
while ensuring accurate results. These model adjustments
are critical for efficiently simulating specific loss types
within the transformer. Also, the comprehensive error
analysis presented in Fig. 12 provides statistical validation
of our Enhanced 2D FEMM model performance across
all measurement points. The relative error distribution
shows that 10 out of 11 validation points (91%) fall
within the acceptable +2% engineering tolerance, with
only measurement point 3 showing a slightly higher error
of 4.8%. This outlier occurs at a core corner region where
3D edge effects are most pronounced, which is expected
given the 2D model limitations. The error pattern demon-
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Fig. 12. (Color online) FEMM model error at measurement
points.

strates systematic accuracy rather than random scatter,
indicating that our geometric corrections and material
property adjustments are functioning as intended. The
mean absolute error of 1.8% across all measurement
points is well within industry standards for electromagnetic
simulation validation (typically <5% for acceptable
engineering accuracy). Notably, the errors show no bias
toward over-prediction or under-prediction, with approxi-
mately equal distribution of positive and negative deviations.
This balanced error distribution confirms that our Enhanced
2D model does not introduce systematic computational
bias, making it reliable for comparative optimization
studies where relative performance improvements are the
primary concern. The single outlier at measurement point
3 represents a flux concentration region where the 2D
simplification has greatest impact. Despite this limitation,
the overall validation confirms that our model provides
sufficient accuracy for the GA optimization process,
where the algorithm seeks relative improvements rather
than absolute precision. This error analysis validates the
reliability of our Enhanced 2D model for transformer
optimization studies and provides confidence in the
subsequent GA-FEMM optimization results.

4. Conclusion

In conclusion, this work effectively demonstrates the
powerful synergy between Finite Element Method
Magnetics (FEMM) and Genetic Algorithms (GA) in
optimizing the design of three-phase transformers. The
integration of these advanced computational tools resulted
in significant improvements in key areas, including
material usage, cost efficiency, and overall transformer
performance. The optimization process successfully
reduced the amount of copper and core steel required,
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leading to substantial cost savings without compromising,
and in some cases even enhancing, the operational
efficiency of the transformers.

These findings highlight the potential for employing
FEMM and GA in cooperation to push the boundaries of
established transformer design approaches. This technique
allows for a more precise and efficient exploration of the
design space, resulting in transformers that are not only
more cost-effective but also better matched with modern
energy-efficiency standards. Although the study found a
modest cost trade-off associated with some design
optimizations, the overall benefits, notably in terms of
reduced material usage and improved performance, much
surpass this disadvantage.

Furthermore, this research highlights the implications of
applying computational optimization techniques to electrical
infrastructure. The findings pave the way for future
studies aimed at further refining the balance between
efficiency, cost, and material savings. The successful
application of FEMM and GA in this context not only
demonstrates their practical utility but also opens up new
avenues for innovation in transformer design and beyond.
Future research will focus on prototype validation and 3D
FEM benchmarking to further verify the optimization
results presented in this study.
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