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The current underutilization of existing physics-informed neural networks (PINN) in the domain of electro-

magnetic fields necessitates a concerted effort to facilitate the gradual transition from finite element methods to

PINN. The complexity of simulating electric fields across various media using PINN presents significant

challenges, particularly when addressing multiple equations and media in the context of magnetic field analysis,

where numerous magnetic field quantities must be resolved. This study employs PINN to achieve the solution of

the electric field at a simple boundary, enabling the simulation of electric fields in diverse media by accounting

for varying conductivity. Additionally, the research addresses the dynamics of electric field solutions in response

to time-varying boundaries. Subsequently, multiple equations are encoded concurrently, and boundary

conditions are established to facilitate the simultaneous prediction of multiple magnetic fields. Ultimately, the

methodology addresses the resolution of vector magnetic fields in nonlinear materials across multiple media.

The accuracy of the proposed approach is corroborated through a comparative analysis with the finite element

method.
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1. Introduction

In order to achieve the most effective design of

electromagnetic (EM) machines, it is crucial to perform

numerous simulations of the problem, each involving

minor modifications to the parameters. Established

numerical techniques, such as the Finite Element Method

(FEM) [1] and the Finite Difference Method (FDM) [2],

are frequently employed. The time required for each

computation remains constant, irrespective of the extent

of the changes made. Conversely, Deep Learning (DL)

models can be leveraged to capitalize on the common-

alities among various designs, thereby enhancing com-

putational efficiency [3], which renders them a compell-

ing alternative.

The last decade has witnessed transformative progress

in diverse fields, particularly computer vision and natural

language processing [4], largely fueled by deep learning

and the application of deep neural networks (DNNs).

Despite these remarkable achievements, the adoption of

deep learning techniques in numerical computing remains

limited. For example, in the realm of electromagnetic

field (EMF) prediction, deep learning models that utilize

dense regression convolutional neural networks (CNNs)

[5-7] have been implemented and have shown en-

couraging results. These CNN-based architectures are

designed to process two-dimensional input data, where

geometric and excitation information is represented as a

structured array of pixelated data points. However, this

approach necessitates the integration of supplementary

data and the maintenance of a fixed segment of the CNN

framework. Additionally, the training process is resource-

intensive, as it requires a substantial amount of data,

leading to inefficiencies; excessive data may be allocated

to the input phase, rendering the predictions nearly

inconsequential. Consequently, there is a pressing need
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for a deep learning methodology that either minimizes

data requirements or operates effectively with limited data

for the prediction of magnetic fields.

PINN represents a methodology that necessitates

minimal data input [6-8]. This innovative deep learning

approach integrates partial differential equations (PDEs),

boundary conditions (BCs), and initial conditions within a

neural network framework, utilizing automatic differ-

entiation for implementation. The solution is subsequently

optimized through the minimization of a loss function to

effectively tackle the margin challenge, as outlined in

previous studies [9-11]. As a method for solving PDEs,

PINNs show considerable promise and are gaining

recognition [12]. Recently, it has attracted considerable

attention and has been the subject of extensive research

across various domains, including computational fluid

dynamics [13], power systems [14], biomedical engineer-

ing [15], and inverse problems in multiple fields [16-18].

Reports indicate that PINN demonstrates a robust

capability to address nonlinear problems with high spatial

and temporal resolution [19], and it does so without the

necessity for time-stepping, in contrast to conventional

scientific computing techniques [20].

While the application of PINN has been extensively

explored in the context of partial differential equations

related to fluid dynamics, heat transfer, and mechanical

problems, there is a notable scarcity of studies addressing

their use in electromagnetic analysis. This research seeks

to address this deficiency by investigating the applic-

ability of PINN in low-frequency electromagnetic scenarios,

as well as assessing its feasibility and performance.

The application of two-dimensional magnetic proximity

fields in electromagnetic devices and systems presents a

compelling opportunity for resolution through PINN [8,

21, 22]. PINNs have garnered significant attention across

various engineering disciplines due to their ability to

effectively address real-world challenges by simultaneously

modeling empirical data and adhering to fundamental

physical principles. One of the key advantages of PINN is

that their computational cost remains invariant regardless

of the number of collocation points, which alleviates the

traditional computational demands associated with high-

dimensional problem-solving [9, 23]. Furthermore, the

PINN framework is well-suited for addressing inverse

problems and parametric design issues by utilizing

advanced stochastic optimization methods and parallel

computing resources [21, 24].

However, the application of PINN to the resolution of

magnetic fields in electromagnetic systems continues to

encounter several challenges. Primarily, the complexity of

electromagnetic device solutions complicates their encoding

within the PINN framework. Furthermore, the computational

domain in electromagnetism often encompasses various

media [25], which complicates the computational process.

Additionally, traditional methodologies for addressing

problems that utilize the vector potential of the magnetic

field require the calculation of spatial derivatives of the

intrinsic parameters [26]. These derivatives, particularly

at internal boundaries, can be difficult to determine and

may lead to instability during the training of the PINN.

Moreover, in the case of nonlinear media where the

parameterization is contingent upon the field, the necessity

to repeatedly compute the spatial derivatives of the para-

meterization throughout the training cycle significantly

hampers the training efficiency of the PINN.

To address the aforementioned challenges, it is sug-

gested that the learning library of PINN, specifically

deepxde [27], be utilized to analyze the electric field

across various media and boundary conditions. Enhan-

cements have been made to the PINN architecture

designed for the resolution of two-dimensional static

magnetic fields, aimed at increasing training efficiency

and streamlining the code. Additionally, the proposed

methodology seeks to concurrently ascertain both the

magnetic intensity and the magnetic potential vector,

thereby obviating the necessity for calculating spatial

differential operators of the intrinsic parameters. The

approach also includes the resolution of the distribution of

multi-dielectric vector magnetic potentials in nonlinear

materials. The accuracy of this methodology is corrobo-

rated through a comparative analysis with results obtained

from the finite element method. The introduced PINN

network is readily adaptable for addressing nonlinear

problems that involve multiple interrelated physical fields.

In order to substantiate the efficacy of PINN as a

feasible approach for electromagnetic applications, the

problem framework incorporates a range of issues with

varying levels of complexity, while considering aspects

such as geometric configurations, material properties, and

boundary conditions. Notably, the method exhibits a high

degree of accuracy in its solutions. The reference data,

utilized for comparison with the labeled data, is derived

from a traditional finite element analysis solver.

2. Neural Network Modeling of Physical 
Information in Electromagnetic Fields

2.1. Traditional Physical-Informational Neural Net-

works

The conventional physical-informational neural network

represents a framework wherein physical information is

integrated with partial differential equations. However,
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this model is associated with several significant draw-

backs, including its complexity and the cumbersome

nature of its coding process. Additionally, a high degree

of expertise is necessary to effectively encode the physical

information required for problem-solving. Moreover, the

inherent challenges in electromagnetism, characterized by

a multitude of partial differential equations, often necessitate

the simultaneous resolution of several such equations

along with complex boundary conditions, thereby compli-

cating the application of electromagnetism.

In the foundational setup, PINN integrates two learning

strategies: an agent approximator and a partial differential

equation learning network. The component of the loss

function about PDE learning is articulated as a residual

function, which aligns with a form of unsupervised

learning paradigm. PINNs enable point-wise evaluation

across the simulation domain, eliminating the need for

mesh generation, they are regarded as “meshless” metho-

dologies that leverage automatic differentiation (AD) for

executing differentiation operations? the schematic diagram

is shown in Fig. 1.

The principle of PINN can be outlined as below:

1) Construct NN  and adjustable coefficients

(trainable parameters) .

2) Use automatic differentiation (AD) to generate the

necessary difference terms.

3) Define the training error component of the PDE (L1),

the boundary conditions (L2), and the solution

continuity of the interface (L3).

 (1)

4) Optimize the neural network by training it to

determine the optimal parameters by minimizing the

overall loss function (')

In practical applications, achieving a high level of

accuracy necessitates the meticulous adjustment of all

hyperparameters, such as the dimensions of the network,

the learning rate, and the number of residual locations.

When establishing suitable network dimensions for partial

differential equation problems, the smoothness charac-

teristics of the analytical solution emerge as a pivotal

determining factor.

This study involves the selection of a variety of

problems characterized by varying degrees of complexity

in order to determine the steady-state solutions for

electrostatic and static magnetic scenarios, utilizing

constant Dirichlet and Neumann boundary conditions.

2.2. Solving Partial Differential Equations for Electric

and Magnetic Fields Using PINN

Many partial differential equations are involved in

solving electric and magnetic fields, among which

Laplace's equation is involved in solving the electric field,

which is formulated as follows:

(2)

Where u is the voltage, X, Y and Z represent the X, Y

and Z axes, and  is the Laplace operator.

Since the two-dimensional equations are discussed in

this paper, the Laplace equation can be simplified to the

2D Laplacian equation, which is given as follows:

 (3)

Utilizing Laplace's equation, along with initial and

boundary conditions, the solution to the electric field

equation can be obtained by configuring the PINN code

and establishing the Dirichlet and Neumann boundary

conditions. This approach facilitates the derivation of the

electric field distribution at various locations.

Whereas in the magnetic field solution process, which

involves Maxwell's equations and ignores the electric

displacement flux density, Ampere's law for stationary

magnetic fields can be derived.:

 (4)

Where Ji is the applied current density. In the context of

static magnetization, the eddy current density is excluded.

The magnetic field strength H is associated with the

vector potential A by:

 (5)

Where 0 is the vacuum permeability, r is the relative

permeability, B is the magnetic flux density, and A is the

magnetic vector potential. For the two-dimensional case
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Fig. 1. (Color online) PINN solving schematic.
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utilizing the Cartesian coordinate framework, (4) and Eq.

(5) extend to:

 (6)

 (7)

The subscripts signify the constituents in every direction.

The magnetic field Hx, Hy and vector potentials A in (6)-

(7) are solved simultaneously by PINN. And the boundary

conditions of Hx, Hy and A are also required:

 (8)

Above (6)-(8) are edge-valued problems to be solved.

3. Electromagnetic Field Verification Case

3.1. Solving simple boundary electric field equations

The basic two-dimensional Laplace equation for the

electrostatic domain can be employed to characterize the

stable solution of the electrostatic issue, tailored to

accommodate Dirichlet and Neumann boundary conditions.

The CAD drawing of the case is shown in Fig. 2.

Examine the two-dimensional Laplace equation within a

square region :

 (9)

For Case 1, the boundary specifications are outlined as

follows:

 (10)

 (11)

For Case 2, the boundary specifications are outlined as

follows?

 (12)

 (13)

Two neural networks (NN) are independently trained to

approximate the solution. The loss function, as delineated

in Eq. (1), does not contain L3 because there is no

interface condition in the problem, leading to the exclusion

of an interface loss function. The implementation of two-

dimensional Laplacian equations and boundary conditions,

in conjunction with PINN coding, utilizes the deepxde

library, which facilitates the efficient development of the

code and significantly improves its versatility. The

configuration of the electric field is addressed, and

concurrently, it is analyzed using the finite element

method. Subsequently, the discrepancies between the two

solutions are assessed to validate their accuracy.

Due to the temporal variation of certain boundary

conditions associated with the electric field in the present

problem, it is essential to analyze the solution of the

electric field equations within the three-dimensional

framework defined by the X, Y, and T axes. In this

context, the left boundary is established at 0V, while the

right boundary is defined along the longitudinal axis of T,

adhering to the relevant boundary conditions outlined in

this study. Consequently, the boundary condition for

voltage at the right boundary is set to be equal to T. The

corresponding three-dimensional partial differential equation

is formulated as follows:

 (14)

 (15)

 (16)

3.2. Multi-dielectric electric field solution 

Given the diverse conductivities present in various

media, it is essential to address distinct electric field

scenarios, which requires the individual coding of

conductivities for each medium in conjunction with their

respective initial and boundary conditions. This approach

is employed to model a basic parallel-plate capacitor,

utilizing three boundaries corresponding to different

media as a case study. The computer-aided design (CAD)

representation of this case is illustrated in Fig. 3. This

scenario can be conceptualized as two materials that share

a common interface, governed by the following equations:

 (17)
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For Case 3, the boundary specifications are outlined as

follows:

 (18)

 (19)

For Case 4, the boundary specifications are outlined as

follows: 

 (20)

 (21)

In the simulation of the electric field across various

media, a singular neural network is employed to determine

the solution, maintaining a consistent form of the partial

differential equation while varying the magnetic perme-

abilities.

3.3. Simultaneous solution of multiple magnetic field

quantities 

The formulation of magnetic field dynamics inherently

exhibits greater mathematical complexity compared to

electric field descriptions, necessitating that Maxwell's

equations be solved as a coupled system while simultane-

ously satisfying spatially and temporally varying initial-

boundary value constraints. In this context, a straight-

forward magnetic field is examined as a case study by

encoding several equations to be solved simultaneously.

The subsequent quantities can be addressed concurrently.

In the initial phase of development, a neural network

model is constructed to predict outcomes associated with

the boundary value problem (BVP). For the network's

input configuration, positional data from strategically

selected collocation points within the computational

domain are utilized, and the outputs of the neural network

are Hx, Hy and A. Then (6)-(8) are repeated into residual

form:

 (22)

 (23)

The schematic diagram is shown in Fig. 4. Subsequently,

the residuals are utilized to calculate the loss function.

The location derivatives in equations (19), (20) are

acquired through automatic differentiation (AD). AD

utilizes the chain rule in conjunction with backpropa-

gation to ascertain the derivatives of the neural network's
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Fig. 3. (Color online) Corresponding CAD drawings for

different dielectric electric field cases.

Fig. 4. (Color online) PINN magnetic field solving schematic.
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outputs concerning its inputs, thus obtaining the position

derivatives of Hx, Hy and A. In contrast to the finite

difference method, the AD algorithm excels in efficiency,

and numerical stability, and exhibits superior compatibility

with neural networks.

Subsequently, the loss associated with the neural

network is evaluated. The overall loss is determined for

the collocation points situated at both the internal and

external boundaries of the domain. Derived from spatially

distributed residuals, the total loss function undergoes

optimization via gradient-based methods including adaptive

moment estimation (Adam), stochastic gradient descent

(SGD), and limited-memory BFGS (L-BFGS). This

optimization procedure entails continuous refinement of

neuronal weights and biases across all layers. As the loss

converges to its minimum, the trained network's predic-

tions satisfy the mathematical formulation presented in

equations (6)-(8), thereby providing a numerical solution

to the underlying PDE. Upon completion of the training

phase, the field solution at any specified location (X, Y)

can be derived through forward propagation of the neural

network (prediction).

Silicon steel sheet, specifically of grade B30P105, is

utilized as the medium in this study. The relative

permeability of the material is established at 10,000,

while the displacement current density is designated as

1A/mm². The corresponding CAD drawing is presented in

Fig. 5. These parameters are encoded alongside various

equations, and the pertinent boundary conditions are

defined. Following this, the training process is conducted.

3.4. Vector magnetic potential solution for multi-

dielectric magnetic fields of nonlinear materials

Since the magnetic permeability of nonlinear materials

is nonlinear and varies at each point, solving for complex

multi-materials becomes more complicated. The traditional

solution method, generally the finite element method, is

time-consuming and wasteful of computational resources.

Therefore, this paper aims to find a method for solving

the vectorial magnetic potential of nonlinear multi-

dielectric materials by utilizing PINN. To ascertain the

precision and viability of the PINN-derived solution,

Epstein's square circle is used as a case study. Fig. 6

below depicts the physical figure of the Epstein square

ring along with its 2D CAD drawing.

The system comprises three components: air, a silicon

steel sheet, and a copper coil. A total of four sets of coils

are employed, with one set conducting forward current

and another set conducting reverse current. The silicon

steel sheet, positioned centrally among the coils, is

classified as B30P105 and delineates a square area, while

Fig. 5. CAD drawing of the magnetic field solution case.

Fig. 6. (Color online) Epstein's Square Circle Physical and Simulation Diagrams.
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air envelops both the coils and the silicon steel sheet. As a

nonlinear material characterized by fluctuating magnetic

permeability at various internal points, the silicon steel

sheet introduces a more complex problem. In the

subsequent analysis, PINN will be applied to address the

magnetic field associated with this configuration.

Meanwhile, the two-dimensional mesh dissection of

Epstein's square circle is shown in Fig. 7. To prove the

accuracy of the finite element model construction, the

laboratory built a measurement platform, and the

triangular mesh M in the middle region of the right

column of Epstein's square circle was selected as the

experimental measurement data for comparing with the

calculation results of the finite element model.

The partial differential equation it satisfies is given by:

 (24)

Where  is the Laplace operator, A is the vector

magnetic potential,  is the magnetic permeability, Jz is

the displacement current density perpendicular to the

direction of the paper, which is energized by the coil, and

is given by:

 (25)

Where N is the number of coil turns, Icoil is the coil

current, S is the coil area, and ecoil is the unit direction

vector. Due to the magnetic insulation, the boundary

condition is that the magnetic vector magnetic potential at

the outer boundary is 0, and for the air region:

 (26)

4. Results and Discussion

4.1. Comparison of results for simple boundary elec-

tric field equations

As illustrated in Fig. 8(a) and Fig. 8(b), the double-

boundary iteration progressively approaches its minimum

value at approximately 17000 generations, resulting in a

reduction of the loss function from 10² to 10⁻⁶. Con-
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Fig. 7. (Color online) Finite element section of Epstein's square circle.

Fig. 8. (Color online) Iterative diagram for electric field case training.
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currently, the average error percentage is determined to be

2.42%, which signifies an enhanced predictive capability

and a more precise solution for the double-boundary

electric field. In contrast, the four-boundary iteration map

attains its minimum value within 10000 generations,

yielding an average error percentage of 2.21%, thereby

indicating a superior accuracy in predicting the four-

boundary electric field. A comparative analysis with finite

element results demonstrates a minimal overall error, as

depicted in Fig. 9 Notably, partial errors are observed

only in the bottom left and bottom right corners of the

four-boundary scenario, while the overall average error

percentage remains comparatively low. Therefore, it can

be inferred that, in the context of simple boundaries, the

physical information neural network exhibits a strong

correlation with finite element calculations, thereby

Fig. 9. (Color online) PINN predictions vs. finite elements for electric field cases.

Fig. 10. (Color online) Time-varying electric field prediction map.
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delivering accurate solutions for the electric field.

The three-dimensional representation illustrated in Fig.

10 demonstrates that when the boundary is designated as

T, variations along the Z-axis yield a comprehensive

three-dimensional effect. Each cross-section corresponds

to the solution at a specific moment, thereby enhancing

overall computational efficiency and serving as a reference

for temporal solutions of the electric field equation.

4.2. Comparison of multi-dielectric electric field results

The analysis of the multi-media electric field training

iteration diagrams presented in Fig. 11(a) and Fig. 11(b)

reveals that the double-boundary iteration progressively

approaches its minimum value after approximately

600000 generations, with the loss function ultimately

decreasing from 104 to below 10-4. Concurrently, the

average error percentage is determined to be 5.82%,

indicating a satisfactory predictive capability and accurate

resolution for the double-boundary electric field across

various media. In contrast, the four-boundary iteration

diagram demonstrates that the four-boundary iteration

achieves its minimum value within 800000 generations,

accompanied by an average error percentage of 3.17%,

which suggests a higher accuracy in predicting the four-

boundary electric field of the multi-diaphragm system. A

comparative analysis with finite element results indicates

a minimal overall error, as illustrated in Fig. 12. In the

two-boundary scenario, the interfacial error is more

pronounced, whereas in the four-boundary scenario,

localized errors are observed in the upper left and upper

right corners, however, the overall average error percent-

age remains lower. Therefore, it can be concluded that for

multi-dielectric systems with simple boundaries, the

outcomes generated by the physical information neural

network closely correspond with finite element calculations,

thereby providing precise solutions for the electric field in

multi-dielectric configurations.

4.3. Comparison of results for multiple magnetic field

quantities

The training iteration graph, specifically illustrated in

Fig. 13, indicates a significant decline in the iteration

count commencing around the 1000th generation, ultimately

converging towards its minimum value. The loss function

demonstrates a substantial reduction from an initial value

of 100 to a final value of 10⁻⁵. Fig. 14 presents a com-

parative analysis of the predicted and actual values for

four distinct magnetic field quantities. Furthermore, the

average percentage of error for these quantities is

calculated to be 5.54%, 5.39%, 4.06%, and 2.51%,

respectively. This data suggests that the predictive model

exhibits a high level of accuracy in resolving multiple

magnetic field quantities. When juxtaposed with finite

element methods, the overall error is observed to be

lower. Consequently, it can be inferred that for simple

magnetic fields, the outcomes derived from the PINN and

Finite Element analyses are closely aligned, demonstrating

an enhanced capability to accurately determine multiple

magnetic field quantities.

4.4. Comparison of vector magnetic potential solutions

for multi-dielectric magnetic fields in nonlinear materi-

als

Under 50 Hz sinusoidal condition, under industrial

frequency conditions, after applying an excitation voltage

to the primary winding, a magnetizing current is gene-

rated to magnetize the specimen uniformly and an

induced voltage is generated in the secondary winding,

Fig. 11. (Color online) Iterative diagram for training cases with different dielectric electric fields.
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and the magnetic flux density is obtained from the

voltage. Fig. 15 gives the comparison between the

measured and calculated values of the hysteresis return at

the M-unit for the equivalent excitation voltage amplitude

of Umax=9 V and Umax=13 V, respectively. From the

figure, it can be seen that the B-H curves are in good

agreement, and it can be concluded that the finite element

calculation is correct and can be further investigated.

In the context of silicon steel sheet analysis, the

calculation is conducted utilizing a specific formula,

wherein the number of turns is designated as 175, the

current is set at 1A, and the coil area is specified as

0.0019 m². The partial differential equations are addressed

through the application of PINN. Following the establish-

ment of appropriate initial and boundary conditions, a

comparative diagram of the magnetic field is generated.

The comparison illustrated in Fig. 16 indicates that the

overall configuration of the magnetic vector position

exhibits a notable degree of similarity, with minimal error

observed. However, the presence of different media leads

to a more significant error at the junction of the boundary

regions. Furthermore, given the nonlinear nature of

internal magnetic permeability, it is customary to employ

a grid for its specification. In contrast, this study applies

the PINN methodology in meshless domains, resulting in

a uniform assignment of magnetic permeability for

copper. This approach may introduce some inaccuracies;

nonetheless, the overall predictions maintain a commend-

able level of accuracy.

Fig. 13. (Color online) Magnetic field training iteration dia-

gram.

Fig. 12. (Color online) PINN prediction vs. finite element for different dielectric electric field cases.



 292  The Use of Physical-informational Neural Networks in the Field of Electromagnetic Field Solving  Tong Ben et al.

Fig. 14. (Color online) Multiple magnetic field volume predictions vs. finite elements.

Fig. 15. (Color online) Measured vs. calculated values for voltage excitation of Umax=9 V and Umax=13 V.

Fig. 16. (Color online) Comparison between simulation and prediction of Epstein's square circle.
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The isopotential map of the magnetic vector potential,

illustrated in Fig. 17, can be derived from the predicted

map. The isopotential lines exhibit a near-parallel arrange-

ment, consistent with established theoretical principles.

These isopotential lines serve as a valuable tool for

investigating the underlying characteristics of the magnetic

components, which is crucial for enhancing the performance

prediction of electromagnetic devices through deep

learning methodologies.

5. Conclusion

This study proposes the application of PINN to effec-

tively address the problem of electromagnetic field solutions,

utilizing the integrated deepxde library for enhanced

convenience. The findings indicate that accurate solutions

can be achieved for six distinct problems without the need

for labeled training data. The PINN successfully predicts

the electric field distribution for simple geometries, and

the solution for the electric field across various media is

accomplished by differentially defining conductivity

parameters pertinent to each medium. Additionally, by

incorporating partial differential equations relevant to

different magnetic field components, the simultaneous

resolution of vector magnetic potential and magnetic field

strength is facilitated, contingent upon the establishment

of initial and boundary conditions. The study further

explores the distribution of vector magnetic potential in

nonlinear materials across multiple media, thereby

improving the efficiency of magnetic field solutions. The

developed framework achieves over 96% predictive

fidelity for electromagnetic field distributions. Such

performance enhancement directly facilitates the deployment

of PINN architectures in electromagnetic engineering

contexts, particularly in areas requiring precise numerical

analysis and automated parameter tuning. However, the

complete replacement of traditional computational methods,

such as the finite element method, with PINN is currently

impractical due to the extensive training time required.

Nonetheless, the integration of PINN with conventional

solvers presents a promising avenue for future research.

By leveraging the proposed PINN framework, researchers

can explore sophisticated network architectures and

techniques, including attention-based neural networks

(such as transformers), to further enhance the performance

of PINNs.
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