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The current underutilization of existing physics-informed neural networks (PINN) in the domain of electro-
magnetic fields necessitates a concerted effort to facilitate the gradual transition from finite element methods to
PINN. The complexity of simulating electric fields across various media using PINN presents significant
challenges, particularly when addressing multiple equations and media in the context of magnetic field analysis,
where numerous magnetic field quantities must be resolved. This study employs PINN to achieve the solution of
the electric field at a simple boundary, enabling the simulation of electric fields in diverse media by accounting
for varying conductivity. Additionally, the research addresses the dynamics of electric field solutions in response
to time-varying boundaries. Subsequently, multiple equations are encoded concurrently, and boundary
conditions are established to facilitate the simultaneous prediction of multiple magnetic fields. Ultimately, the
methodology addresses the resolution of vector magnetic fields in nonlinear materials across multiple media.
The accuracy of the proposed approach is corroborated through a comparative analysis with the finite element

method.
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1. Introduction

In order to achieve the most effective design of
electromagnetic (EM) machines, it is crucial to perform
numerous simulations of the problem, each involving
minor modifications to the parameters. Established
numerical techniques, such as the Finite Element Method
(FEM) [1] and the Finite Difference Method (FDM) [2],
are frequently employed. The time required for each
computation remains constant, irrespective of the extent
of the changes made. Conversely, Deep Learning (DL)
models can be leveraged to capitalize on the common-
alities among various designs, thereby enhancing com-
putational efficiency [3], which renders them a compell-
ing alternative.

The last decade has witnessed transformative progress
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in diverse fields, particularly computer vision and natural
language processing [4], largely fueled by deep learning
and the application of deep neural networks (DNNs).
Despite these remarkable achievements, the adoption of
deep learning techniques in numerical computing remains
limited. For example, in the realm of electromagnetic
field (EMF) prediction, deep learning models that utilize
dense regression convolutional neural networks (CNNs)
[5-7] have been implemented and have shown en-
couraging results. These CNN-based architectures are
designed to process two-dimensional input data, where
geometric and excitation information is represented as a
structured array of pixelated data points. However, this
approach necessitates the integration of supplementary
data and the maintenance of a fixed segment of the CNN
framework. Additionally, the training process is resource-
intensive, as it requires a substantial amount of data,
leading to inefficiencies; excessive data may be allocated
to the input phase, rendering the predictions nearly
inconsequential. Consequently, there is a pressing need
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for a deep learning methodology that either minimizes
data requirements or operates effectively with limited data
for the prediction of magnetic fields.

PINN represents a methodology that necessitates
minimal data input [6-8]. This innovative deep learning
approach integrates partial differential equations (PDEs),
boundary conditions (BCs), and initial conditions within a
neural network framework, utilizing automatic differ-
entiation for implementation. The solution is subsequently
optimized through the minimization of a loss function to
effectively tackle the margin challenge, as outlined in
previous studies [9-11]. As a method for solving PDEs,
PINNs show considerable promise and are gaining
recognition [12]. Recently, it has attracted considerable
attention and has been the subject of extensive research
across various domains, including computational fluid
dynamics [13], power systems [14], biomedical engineer-
ing [15], and inverse problems in multiple fields [16-18].
Reports indicate that PINN demonstrates a robust
capability to address nonlinear problems with high spatial
and temporal resolution [19], and it does so without the
necessity for time-stepping, in contrast to conventional
scientific computing techniques [20].

While the application of PINN has been extensively
explored in the context of partial differential equations
related to fluid dynamics, heat transfer, and mechanical
problems, there is a notable scarcity of studies addressing
their use in electromagnetic analysis. This research seeks
to address this deficiency by investigating the applic-
ability of PINN in low-frequency electromagnetic scenarios,
as well as assessing its feasibility and performance.

The application of two-dimensional magnetic proximity
fields in electromagnetic devices and systems presents a
compelling opportunity for resolution through PINN [8,
21, 22]. PINNs have garnered significant attention across
various engineering disciplines due to their ability to
effectively address real-world challenges by simultaneously
modeling empirical data and adhering to fundamental
physical principles. One of the key advantages of PINN is
that their computational cost remains invariant regardless
of the number of collocation points, which alleviates the
traditional computational demands associated with high-
dimensional problem-solving [9, 23]. Furthermore, the
PINN framework is well-suited for addressing inverse
problems and parametric design issues by utilizing
advanced stochastic optimization methods and parallel
computing resources [21, 24].

However, the application of PINN to the resolution of
magnetic fields in electromagnetic systems continues to
encounter several challenges. Primarily, the complexity of
electromagnetic device solutions complicates their encoding
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within the PINN framework. Furthermore, the computational
domain in electromagnetism often encompasses various
media [25], which complicates the computational process.
Additionally, traditional methodologies for addressing
problems that utilize the vector potential of the magnetic
field require the calculation of spatial derivatives of the
intrinsic parameters [26]. These derivatives, particularly
at internal boundaries, can be difficult to determine and
may lead to instability during the training of the PINN.
Moreover, in the case of nonlinear media where the
parameterization is contingent upon the field, the necessity
to repeatedly compute the spatial derivatives of the para-
meterization throughout the training cycle significantly
hampers the training efficiency of the PINN.

To address the aforementioned challenges, it is sug-
gested that the learning library of PINN, specifically
deepxde [27], be utilized to analyze the electric field
across various media and boundary conditions. Enhan-
cements have been made to the PINN architecture
designed for the resolution of two-dimensional static
magnetic fields, aimed at increasing training efficiency
and streamlining the code. Additionally, the proposed
methodology seeks to concurrently ascertain both the
magnetic intensity and the magnetic potential vector,
thereby obviating the necessity for calculating spatial
differential operators of the intrinsic parameters. The
approach also includes the resolution of the distribution of
multi-dielectric vector magnetic potentials in nonlinear
materials. The accuracy of this methodology is corrobo-
rated through a comparative analysis with results obtained
from the finite element method. The introduced PINN
network is readily adaptable for addressing nonlinear
problems that involve multiple interrelated physical fields.

In order to substantiate the efficacy of PINN as a
feasible approach for electromagnetic applications, the
problem framework incorporates a range of issues with
varying levels of complexity, while considering aspects
such as geometric configurations, material properties, and
boundary conditions. Notably, the method exhibits a high
degree of accuracy in its solutions. The reference data,
utilized for comparison with the labeled data, is derived
from a traditional finite element analysis solver.

2. Neural Network Modeling of Physical
Information in Electromagnetic Fields

2.1. Traditional Physical-Informational Neural Net-
works

The conventional physical-informational neural network
represents a framework wherein physical information is
integrated with partial differential equations. However,
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this model is associated with several significant draw-
backs, including its complexity and the cumbersome
nature of its coding process. Additionally, a high degree
of expertise is necessary to effectively encode the physical
information required for problem-solving. Moreover, the
inherent challenges in electromagnetism, characterized by
a multitude of partial differential equations, often necessitate
the simultaneous resolution of several such equations
along with complex boundary conditions, thereby compli-
cating the application of electromagnetism.

In the foundational setup, PINN integrates two learning
strategies: an agent approximator and a partial differential
equation learning network. The component of the loss
function about PDE learning is articulated as a residual
function, which aligns with a form of unsupervised
learning paradigm. PINNs enable point-wise evaluation
across the simulation domain, eliminating the need for
mesh generation, they are regarded as “meshless” metho-
dologies that leverage automatic differentiation (AD) for
executing differentiation operations? the schematic diagram
is shown in Fig. 1.

The principle of PINN can be outlined as below:

1) Construct NN#(X;0) and adjustable coefficients

(trainable parameters) 6.

2) Use automatic differentiation (AD) to generate the

necessary difference terms.

3) Define the training error component of the PDE (L),

the boundary conditions (L,), and the solution
continuity of the interface (L;).

MSE=L +L,+L, (1)

4) Optimize the neural network by training it to
determine the optimal parameters by minimizing the
overall loss function (")

In practical applications, achieving a high level of
accuracy necessitates the meticulous adjustment of all
hyperparameters, such as the dimensions of the network,
the learning rate, and the number of residual locations.

oss|—¢'

Fig. 1. (Color online) PINN solving schematic.
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When establishing suitable network dimensions for partial
differential equation problems, the smoothness charac-
teristics of the analytical solution emerge as a pivotal
determining factor.

This study involves the selection of a variety of
problems characterized by varying degrees of complexity
in order to determine the steady-state solutions for
electrostatic and static magnetic scenarios, utilizing
constant Dirichlet and Neumann boundary conditions.

2.2. Solving Partial Differential Equations for Electric
and Magnetic Fields Using PINN

Many partial differential equations are involved in
solving electric and magnetic fields, among which
Laplace's equation is involved in solving the electric field,
which is formulated as follows:

ou ou Ou
+ +
ox* oy* oz?

Viu = =0 2
Where u is the voltage, X, Y and Z represent the X, YV
and Z axes, and V? is the Laplace operator.
Since the two-dimensional equations are discussed in
this paper, the Laplace equation can be simplified to the
2D Laplacian equation, which is given as follows:

V2 o'u  Ou

HZaXZ +W:0 (3)

Utilizing Laplace's equation, along with initial and
boundary conditions, the solution to the electric field
equation can be obtained by configuring the PINN code
and establishing the Dirichlet and Neumann boundary
conditions. This approach facilitates the derivation of the
electric field distribution at various locations.

Whereas in the magnetic field solution process, which
involves Maxwell's equations and ignores the electric
displacement flux density, Ampere's law for stationary
magnetic fields can be derived.:

VxH=J, “4)

Where J; is the applied current density. In the context of
static magnetization, the eddy current density is excluded.
The magnetic field strength H is associated with the
vector potential 4 by:

ppt,H = B=Vx 4 5)
Where 14 is the vacuum permeability, g4 is the relative

permeability, B is the magnetic flux density, and 4 is the
magnetic vector potential. For the two-dimensional case
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utilizing the Cartesian coordinate framework, (4) and Eq.
(5) extend to:

oH
, OH, =J (6)
oxX oY
04
/’l()ll’erx = Ay
oY %)
e e
/u()/'lr y aX

The subscripts signify the constituents in every direction.
The magnetic field H,, H, and vector potentials 4 in (6)-
(7) are solved simultaneously by PINN. And the boundary
conditions of H,, H, and 4 are also required:

Hn

F=0, 4| =0 (8)
Above (6)-(8) are edge-valued problems to be solved.

3. Electromagnetic Field Verification Case

3.1. Solving simple boundary electric field equations

The basic two-dimensional Laplace equation for the
electrostatic domain can be employed to characterize the
stable solution of the electrostatic issue, tailored to
accommodate Dirichlet and Neumann boundary conditions.
The CAD drawing of the case is shown in Fig. 2.
Examine the two-dimensional Laplace equation within a
square region I':

~Vu(X,Y)=0,(X.Y)el )

For Case 1, the boundary specifications are outlined as
follows:

u(0,Y)=8V (10)
u(2,Y)=10r (11)

For Case 2, the boundary specifications are outlined as
follows?

(2m,1m) V=10V (2m,1m)
a = 3 G
. L > >
(0m,0m) (Om,0m) V=10V

(a) CAD drawing for case 1 (b) CAD drawing for case 2

Fig. 2. Corresponding CAD drawings for electric field cases.
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u(0,Y)=u(2,Y)=8¥ (12)
u(X,0)=u(X,1)=10/ (13)

Two neural networks (NN) are independently trained to
approximate the solution. The loss function, as delineated
in Eq. (1), does not contain L; because there is no
interface condition in the problem, leading to the exclusion
of an interface loss function. The implementation of two-
dimensional Laplacian equations and boundary conditions,
in conjunction with PINN coding, utilizes the deepxde
library, which facilitates the efficient development of the
code and significantly improves its versatility. The
configuration of the electric field is addressed, and
concurrently, it is analyzed using the finite element
method. Subsequently, the discrepancies between the two
solutions are assessed to validate their accuracy.

Due to the temporal variation of certain boundary
conditions associated with the electric field in the present
problem, it is essential to analyze the solution of the
electric field equations within the three-dimensional
framework defined by the X, Y, and T axes. In this
context, the left boundary is established at 0V, while the
right boundary is defined along the longitudinal axis of T,
adhering to the relevant boundary conditions outlined in
this study. Consequently, the boundary condition for
voltage at the right boundary is set to be equal to T. The
corresponding three-dimensional partial differential equation
is formulated as follows:

u  *u  Ou
Viu= + + =0 14
T oy T ar 19
u(0,Y,T)=0V (15)
u(LY,T)=TV (16)

3.2. Multi-dielectric electric field solution

Given the diverse conductivities present in various
media, it is essential to address distinct electric field
scenarios, which requires the individual coding of
conductivities for each medium in conjunction with their
respective initial and boundary conditions. This approach
is employed to model a basic parallel-plate capacitor,
utilizing three boundaries corresponding to different
media as a case study. The computer-aided design (CAD)
representation of this case is illustrated in Fig. 3. This
scenario can be conceptualized as two materials that share
a common interface, governed by the following equations:

—V.(&Vu(X,Y))=0,(X,Y)eT, (17)
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V=100V (2m.4m) v=1y (m.4m)
g =1 =0
> >
T T
> >
&= 5 g = 1

(Om,0m) V=0V
(a) CAD drawing for case 3

(Om,0m) V=0V
(b) CAD drawing for case 4

Fig. 3. (Color online) Corresponding CAD drawings for
different dielectric electric field cases.

For Case 3, the boundary specifications are outlined as
follows:

u(X,0)=00 (18)
u(X,4)=100V (19)

For Case 4, the boundary specifications are outlined as
follows:

u(X,0)=u(0,Y)=u(l,Y)=0V (20)
u(X,1)=1 1)

In the simulation of the electric field across various
media, a singular neural network is employed to determine
the solution, maintaining a consistent form of the partial
differential equation while varying the magnetic perme-
abilities.

D:O H” D=O ooo:—l

res, = po pt H +—

Fig. 4. (Color online) PINN magnetic field solving schematic.
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3.3. Simultaneous solution of multiple magnetic field
quantities

The formulation of magnetic field dynamics inherently
exhibits greater mathematical complexity compared to
electric field descriptions, necessitating that Maxwell's
equations be solved as a coupled system while simultane-
ously satisfying spatially and temporally varying initial-
boundary value constraints. In this context, a straight-
forward magnetic field is examined as a case study by
encoding several equations to be solved simultaneously.
The subsequent quantities can be addressed concurrently.

In the initial phase of development, a neural network
model is constructed to predict outcomes associated with
the boundary value problem (BVP). For the network's
input configuration, positional data from strategically
selected collocation points within the computational
domain are utilized, and the outputs of the neural network
are H,, H, and A. Then (6)-(8) are repeated into residual
form:

res, :(%_%j_J;
res, = o H, 2 @)
res; = ppp H +2—;
res = A, res.=H, |,... (23)

The schematic diagram is shown in Fig. 4. Subsequently,
the residuals are utilized to calculate the loss function.
The location derivatives in equations (19), (20) are
acquired through automatic differentiation (AD). AD
utilizes the chain rule in conjunction with backpropa-
gation to ascertain the derivatives of the neural network's

fmmm e N

|
|
|
|
|

04

oX



Journal of Magnetics, Vol. 30, No. 3, September 2025

outputs concerning its inputs, thus obtaining the position
derivatives of H,, H, and A. In contrast to the finite
difference method, the AD algorithm excels in efficiency,
and numerical stability, and exhibits superior compatibility
with neural networks.

Subsequently, the loss associated with the neural
network is evaluated. The overall loss is determined for
the collocation points situated at both the internal and
external boundaries of the domain. Derived from spatially
distributed residuals, the total loss function undergoes
optimization via gradient-based methods including adaptive
moment estimation (Adam), stochastic gradient descent
(SGD), and limited-memory BFGS (L-BFGS). This
optimization procedure entails continuous refinement of
neuronal weights and biases across all layers. As the loss
converges to its minimum, the trained network's predic-
tions satisfy the mathematical formulation presented in
equations (6)-(8), thereby providing a numerical solution
to the underlying PDE. Upon completion of the training
phase, the field solution at any specified location (X, Y)
can be derived through forward propagation of the neural
network (prediction).

Silicon steel sheet, specifically of grade B30P105, is
utilized as the medium in this study. The relative
permeability of the material is established at 10,000,
while the displacement current density is designated as
1A/mm?. The corresponding CAD drawing is presented in
Fig. 5. These parameters are encoded alongside various
equations, and the pertinent boundary conditions are
defined. Following this, the training process is conducted.
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Silicon steel sheet (Im,1m)

J=1A/mm?

(Om,0m)
Fig. 5. CAD drawing of the magnetic field solution case.

3.4. Vector magnetic potential solution for multi-
dielectric magnetic fields of nonlinear materials

Since the magnetic permeability of nonlinear materials
is nonlinear and varies at each point, solving for complex
multi-materials becomes more complicated. The traditional
solution method, generally the finite element method, is
time-consuming and wasteful of computational resources.
Therefore, this paper aims to find a method for solving
the vectorial magnetic potential of nonlinear multi-
dielectric materials by utilizing PINN. To ascertain the
precision and viability of the PINN-derived solution,
Epstein's square circle is used as a case study. Fig. 6
below depicts the physical figure of the Epstein square
ring along with its 2D CAD drawing.

The system comprises three components: air, a silicon
steel sheet, and a copper coil. A total of four sets of coils
are employed, with one set conducting forward current
and another set conducting reverse current. The silicon
steel sheet, positioned centrally among the coils, is
classified as B30P105 and delineates a square area, while

excitation coil

0.2
0.15 ; ]
0.1 |
0.05
E 0
-0.05 1
0.1  —
-0.15 L I
0.2 . : - . ; r
%-0.15 0.1 005 0 005 01 015 02

X/m

silicon steel sheet

(a) Epstein’s Physical picture

(b) Epstein Simulation

Fig. 6. (Color online) Epstein's Square Circle Physical and Simulation Diagrams.
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Fig. 7. (Color online) Finite element section of Epstein's square circle.

air envelops both the coils and the silicon steel sheet. As a
nonlinear material characterized by fluctuating magnetic
permeability at various internal points, the silicon steel
sheet introduces a more complex problem. In the
subsequent analysis, PINN will be applied to address the
magnetic field associated with this configuration.

Meanwhile, the two-dimensional mesh dissection of
Epstein's square circle is shown in Fig. 7. To prove the
accuracy of the finite element model construction, the
laboratory built a measurement platform, and the
triangular mesh M in the middle region of the right
column of Epstein's square circle was selected as the
experimental measurement data for comparing with the
calculation results of the finite element model.

The partial differential equation it satisfies is given by:

ViAd=-uJ

z

24)

Where V? is the Laplace operator, 4 is the vector
magnetic potential, y is the magnetic permeability, J, is
the displacement current density perpendicular to the

direction of the paper, which is energized by the coil, and
is given by:
NI

J — coil
‘ S

Ceoil (25)

Where N is the number of coil turns, /., is the coil
current, S is the coil area, and ey, is the unit direction
vector. Due to the magnetic insulation, the boundary
condition is that the magnetic vector magnetic potential at
the outer boundary is 0, and for the air region:

J,=0 (26)

4. Results and Discussion

4.1. Comparison of results for simple boundary elec-
tric field equations

As illustrated in Fig. 8(a) and Fig. 8(b), the double-
boundary iteration progressively approaches its minimum
value at approximately 17000 generations, resulting in a
reduction of the loss function from 10* to 107 Con-

10°

10000 15000 20000 25000 30000
Iterations

0 5000

(a) Case | Training Iteration Diagram

20000 40000 60000 80000 100000 120000 140000
Iterations

0

(b) Case 2 Training Iteration Diagram

Fig. 8. (Color online) Iterative diagram for electric field case training.
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Fig. 9. (Color online) PINN predictions vs. finite elements for electric field cases.

currently, the average error percentage is determined to be
2.42%, which signifies an enhanced predictive capability
and a more precise solution for the double-boundary
electric field. In contrast, the four-boundary iteration map
attains its minimum value within 10000 generations,
yielding an average error percentage of 2.21%, thereby
indicating a superior accuracy in predicting the four-
boundary electric field. A comparative analysis with finite

04 06
X

08 00

10
(a) Three-dimensional plot of boundary
change over time

element results demonstrates a minimal overall error, as
depicted in Fig. 9 Notably, partial errors are observed
only in the bottom left and bottom right corners of the
four-boundary scenario, while the overall average error
percentage remains comparatively low. Therefore, it can
be inferred that, in the context of simple boundaries, the
physical information neural network exhibits a strong
correlation with finite element calculations, thereby

ulV
10
1.04 0.8
1.02
1.00 T | [06
0.98
0.96 0.4
10
0.2
0.0
x 08 ,, o0

(b) Cross-section at a given point in time

Fig. 10. (Color online) Time-varying electric field prediction map.
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0 100000 200000300000 400000 500000 600000700000800000
Iterations

(b) Case 4 Training Iteration Diagram

Fig. 11. (Color online) Iterative diagram for training cases with different dielectric electric fields.

delivering accurate solutions for the electric field.

The three-dimensional representation illustrated in Fig.
10 demonstrates that when the boundary is designated as
T, variations along the Z-axis yield a comprehensive
three-dimensional effect. Each cross-section corresponds
to the solution at a specific moment, thereby enhancing
overall computational efficiency and serving as a reference
for temporal solutions of the electric field equation.

4.2. Comparison of multi-dielectric electric field results

The analysis of the multi-media electric field training
iteration diagrams presented in Fig. 11(a) and Fig. 11(b)
reveals that the double-boundary iteration progressively
approaches its minimum value after approximately
600000 generations, with the loss function ultimately
decreasing from 10* to below 10™. Concurrently, the
average error percentage is determined to be 5.82%,
indicating a satisfactory predictive capability and accurate
resolution for the double-boundary electric field across
various media. In contrast, the four-boundary iteration
diagram demonstrates that the four-boundary iteration
achieves its minimum value within 800000 generations,
accompanied by an average error percentage of 3.17%,
which suggests a higher accuracy in predicting the four-
boundary electric field of the multi-diaphragm system. A
comparative analysis with finite element results indicates
a minimal overall error, as illustrated in Fig. 12. In the
two-boundary scenario, the interfacial error is more
pronounced, whereas in the four-boundary scenario,
localized errors are observed in the upper left and upper
right corners, however, the overall average error percent-
age remains lower. Therefore, it can be concluded that for
multi-dielectric systems with simple boundaries, the
outcomes generated by the physical information neural

network closely correspond with finite element calculations,
thereby providing precise solutions for the electric field in
multi-dielectric configurations.

4.3. Comparison of results for multiple magnetic field
quantities

The training iteration graph, specifically illustrated in
Fig. 13, indicates a significant decline in the iteration
count commencing around the 1000th generation, ultimately
converging towards its minimum value. The loss function
demonstrates a substantial reduction from an initial value
of 100 to a final value of 107°. Fig. 14 presents a com-
parative analysis of the predicted and actual values for
four distinct magnetic field quantities. Furthermore, the
average percentage of error for these quantities is
calculated to be 5.54%, 5.39%, 4.06%, and 2.51%,
respectively. This data suggests that the predictive model
exhibits a high level of accuracy in resolving multiple
magnetic field quantities. When juxtaposed with finite
element methods, the overall error is observed to be
lower. Consequently, it can be inferred that for simple
magnetic fields, the outcomes derived from the PINN and
Finite Element analyses are closely aligned, demonstrating
an enhanced capability to accurately determine multiple
magnetic field quantities.

4.4. Comparison of vector magnetic potential solutions
for multi-dielectric magnetic fields in nonlinear materi-
als

Under 50 Hz sinusoidal condition, under industrial
frequency conditions, after applying an excitation voltage
to the primary winding, a magnetizing current is gene-
rated to magnetize the specimen uniformly and an
induced voltage is generated in the secondary winding,
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Fig. 12. (Color online) PINN prediction vs. finite element for different dielectric electric field cases.
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Fig. 13. (Color online) Magnetic field training iteration dia-

gram.

0 10000

and the magnetic flux density is obtained from the
voltage. Fig. 15 gives the comparison between the
measured and calculated values of the hysteresis return at
the M-unit for the equivalent excitation voltage amplitude
of Upnax=9 V and Up,=13 V, respectively. From the
figure, it can be seen that the B-H curves are in good
agreement, and it can be concluded that the finite element

calculation is correct and can be further investigated.

In the context of silicon steel sheet analysis, the
calculation is conducted utilizing a specific formula,
wherein the number of turns is designated as 175, the
current is set at 1A, and the coil area is specified as
0.0019 m?. The partial differential equations are addressed
through the application of PINN. Following the establish-
ment of appropriate initial and boundary conditions, a
comparative diagram of the magnetic field is generated.

The comparison illustrated in Fig. 16 indicates that the
overall configuration of the magnetic vector position
exhibits a notable degree of similarity, with minimal error
observed. However, the presence of different media leads
to a more significant error at the junction of the boundary
regions. Furthermore, given the nonlinear nature of
internal magnetic permeability, it is customary to employ
a grid for its specification. In contrast, this study applies
the PINN methodology in meshless domains, resulting in
a uniform assignment of magnetic permeability for
copper. This approach may introduce some inaccuracies;
nonetheless, the overall predictions maintain a commend-
able level of accuracy.
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Fig. 14. (Color online) Multiple magnetic field volume predictions vs. finite elements.
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Fig. 16. (Color online) Comparison between simulation and prediction of Epstein's square circle.
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Fig. 17. (Color online) Epstein's square circle equipotential
map.

The isopotential map of the magnetic vector potential,
illustrated in Fig. 17, can be derived from the predicted
map. The isopotential lines exhibit a near-parallel arrange-
ment, consistent with established theoretical principles.
These isopotential lines serve as a valuable tool for
investigating the underlying characteristics of the magnetic
components, which is crucial for enhancing the performance
prediction of electromagnetic devices through deep
learning methodologies.

5. Conclusion

This study proposes the application of PINN to effec-
tively address the problem of electromagnetic field solutions,
utilizing the integrated deepxde library for enhanced
convenience. The findings indicate that accurate solutions
can be achieved for six distinct problems without the need
for labeled training data. The PINN successfully predicts
the electric field distribution for simple geometries, and
the solution for the electric field across various media is
accomplished by differentially defining conductivity
parameters pertinent to each medium. Additionally, by
incorporating partial differential equations relevant to
different magnetic field components, the simultaneous
resolution of vector magnetic potential and magnetic field
strength is facilitated, contingent upon the establishment
of initial and boundary conditions. The study further
explores the distribution of vector magnetic potential in
nonlinear materials across multiple media, thereby
improving the efficiency of magnetic field solutions. The
developed framework achieves over 96% predictive
fidelity for electromagnetic field distributions. Such
performance enhancement directly facilitates the deployment
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of PINN architectures in electromagnetic engineering
contexts, particularly in areas requiring precise numerical
analysis and automated parameter tuning. However, the
complete replacement of traditional computational methods,
such as the finite element method, with PINN is currently
impractical due to the extensive training time required.
Nonetheless, the integration of PINN with conventional
solvers presents a promising avenue for future research.
By leveraging the proposed PINN framework, researchers
can explore sophisticated network architectures and
techniques, including attention-based neural networks
(such as transformers), to further enhance the performance
of PINNs.
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