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This study presents a stress-dependent magnetostriction model that incorporates hysteresis effects to simulate

the magnetostriction properties of amorphous alloys in response to variations in magnetic fields and stress. The

model is grounded in a microscopic statistical constructive framework. Given the absence of a crystalline

structure in amorphous materials, a probability distribution function is developed to account for stress effects,

which characterizes the randomly distributed magnetic moments within the amorphous matrix through the

concept of locally ordered magnetic moment regions. The relationship between magnetostriction and magnetization

is established by integrating the derived stress-dependent magnetostriction expression with a modified anhysteretic

magnetization model. Hysteresis effects are addressed by incorporating an irreversible magnetization component, as

informed by the inverse Jiles-Atherton theory. The parameters of the model are calibrated using experimental

data. The simulation outcomes demonstrate that the proposed model successfully replicates the magnetostriction loop

while accounting for stress influences.
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1. Introduction

In contrast to silicon steel materials, amorphous alloys

lack a defined crystalline structure and structural imperfections

that hinder the movement of magnetic domain walls at

the microscopic level. At a macroscopic scale, amorphous

alloys exhibit several advantageous properties, including

low energy loss, high permeability, and elevated saturation

flux density. Specifically, at equivalent frequencies and

flux densities, the core loss of amorphous stator materials

is approximately 18.4% that of silicon steel stator cores,

while their permeability is roughly double that of silicon

steel [1]. Consequently, the utilization of amorphous alloys in

place of traditional silicon steel for the cores of low-power,

high-frequency electrical equipment can lead to a significant

reduction in core losses, presenting promising prospects

for applications in motor design. However, the thickness

of amorphous alloy strips is only one-tenth that of silicon

steel, resulting in heightened sensitivity to stress, and their

magnetostriction is considerably greater than that of silicon

steel, which induces stronger vibrations [2, 3]. If core

vibrations are mitigated through the application of stress,

the magnetic properties of the core may be compromised.

Therefore, it is essential to investigate the mechanisms by

which stress influences the magnetization and magnetostriction

characteristics of amorphous alloys.

Presently, conventional models of stress-dependent

magnetostriction can be developed utilizing various

theoretical frameworks, including phenomenological theory,

thermodynamic models, magnetic domain theory, and

multiscale models. The phenomenological model primarily

captures the influence of stress on magnetostriction by

incorporating a stress term into the distribution function

derived from first-order and second-order slew curves [4].

However, this model is complex, necessitating extensive

calculations, and lacks a robust physical interpretation.

The thermodynamic model, on the other hand, derives the

magnetostriction strain equation through the partial

differentiation of Gibbs free energy with respect to stress,

offering a more straightforward computational approach.

Nonetheless, this model is contingent upon experimental

data, and certain parameters are challenging to ascertain [5].
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The magnetic domain theory model addresses magnetostriction

by analyzing domain motion and deflection in relation to

domain energy [6], allowing for the consideration of stress

effects through the evaluation of magnetoelastic energy.

However, this model is characterized by a considerable

number of unknown parameters. The multiscale model

captures the response of single crystals by examining the

behavior of local magnetic fields and stresses at the

domain level, subsequently applying the principle of

homogenization to extend these insights to polycrystalline

materials. Despite its advantages, this model is associated

with prolonged computational times and is not suitable

for finite element numerical analyses [7]. A simplified

multiscale model has been proposed, which assumes that

each single crystal comprises six magnetic domains, with

the energy of each domain represented by a simplified free

energy function, thereby significantly reducing computational

time [8]. However, this simplified approach fails to account

for the hysteresis effect inherent in magnetostriction.

Furthermore, given that amorphous alloys lack a crystalline

structure, this model does not adequately address the

unique characteristics of amorphous materials. In conclusion,

existing magnetostriction models predominantly concentrate

on silicon steel materials, neglecting the distinctions

present in amorphous alloys. Additionally, some studies

yield single-valued curves of magnetostriction in relation

to magnetization strength, without adequately considering

the hysteresis effect induced by magnetic field excitation

and the dependence on stress.

This paper presents an improved magnetostrictive

model for amorphous alloys that takes into account the

influence of compressive stress. The model effectively

correlates macroscopic magnetic behavior with statistical

outcomes derived from microscopic behavior, thereby

providing a physically coherent framework. The parameters

of the model are determined using experimental measurement

data, and the validity of the proposed model is substantiated

by comparing the simulation results with the relevant

experimental findings.

2. Stress-dependent Magnetostriction 
Model of Amorphous Alloys

2.1. Improved microscopic statistical constructive model

Amorphous alloys do not have a crystal structure and the

atomic magnetic moments are usually randomly distributed in

an irregular structure resulting in the lack of magneto-

crystalline anisotropy properties. Thus, it is regarded as

an isotropic material [9]. A schematic illustration of the

magnetostriction mechanism in an isotropic material is

presented in Fig. 1. Within this diagram, each atom is

individually illustrated by a solid ellipse, and the

magnetic moments of the atoms are indicated by arrows.

For the macroscopic isotropy of amorphous alloys, the

free energy of the atomic magnetic moment can be

expressed as the sum of the Seeman energy Wmag and

the stress anisotropy energy Wσ [8]:

 (1)

where σ represents the applied stress; H and Ms correspond to

the external magnetic field and saturation magnetization

strength, respectively; the saturation magnetostriction

coefficient is given by λs; μ0 denotes the vacuum permeability;

αm, γm and βm (m = {1, 2, 3}) are the direction cosines of

the magnetization strength M, magnetic field strength H

and applied stress σ in the X, Y, Z directions, respectively;

λ100, λ111 are the magnetostriction coefficients in the [100],

[111] directions, respectively.

According to the actual working condition of the stress-

actuated amorphous iron core, this paper considers the

compressive stress applied perpendicular to the magnetic

circuit direction of the core, and the magnetic field

direction along the X-axis. When the compressive stress is

applied along the Y-direction, β1 = β3 = 0, γ2 = γ3 = 0. And

since amorphous alloys are macroscopically isotropic, the

magnetostriction coefficients of the directions are the

same, i.e., λ100 = λ111 = λs. The free energy of the magnetic

moment then simplifies to:

 (2)

The micro-statistical constructive model is established

through probabilistic statistical analysis of the angular

dispersion of magnetic moments and the corresponding

deformation associated with the orientation of these

moments, as shown in Fig. 2; where l0 represents the length of

the initial atomic structure, ps represents the deformation. 

0 1 1 2 2 3 3

2 2 2 2 2 2

100 1 1 2 2 3 3

111 1 2 1 2 2 3 2 3 1 3 1 3

( )

1.5 ( )

3 ( )

i mag s
W W W HM


      

       

             

     

  

  

2 2

mag 0 1 1 2 2
1.5

i s s
W W W HM


         

Fig. 1. (Color online) Schematic diagram of magnetostriction

mechanism.
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The modeling approach is to intercept a face of the

three-dimensional structure inside the material and divide

the magnetic moment distribution on that face into n

angles θ [10]. Each atom's magnetic moment i corresponds to

a probability distribution g(θi) for that magnetic moment

angle. According to the actual working condition of stress

action, the compressive stress applied to the core in the

direction that is perpendicular to the magnetic circuit is

considered in this paper. Therefore, the improved probability

distribution function can be expressed as:

 (3)

where U is a normalized function of stress and magnetic field,

κ = μ0AsMs, αs = 1.5Asλs; a material parameter associated with

the initial susceptibility χ0 is represented as As, As = 3χ0/μ0Ms
2. 

The integral of the probability function g to the overall

distribution is 1, i.e.:

 (4)

Once the new probability distribution function is defined,

combining Eqs. (3) and (4), the macroscopic magnetization

strength MI of amorphous alloys under applied stress in

the Y-direction can be obtained by three-dimensional

integration:

 (5)

2.2. Stress-dependent magnetostriction model of amor-

phous alloys

Since the micro-statistical model can take into account

the effect of stress and the inverse JA model exhibits the

hysteresis effect, the two are combined. The anhysteretic

magnetization intensity from the inverse JA model is

replaced by Eq. (5). And according to the mean-field

theory, the magnetic field H in Eq. (5) is corrected to the

effective magnetic field He [11]. The constructed stress-

dependent hysteresis model is represented as:

 (6)

where Be represents the effective magnetic density; α signifies

the mean-field coupling inside the magnetic domain; c is

the reversible parameter; the stress-related anhysteretic

magnetization Man(σ, He) is expressed as follows:

 (7)

Mirr denotes the irreversible magnetization; dMirr/dBe is

represented as: 

(8)

Where k represents the pinning parameter; δM is the

bounding coefficient defined to prevent the emergence of

non-physical solutions; δ indicates the direction coefficient.

He denotes the effective magnetic field. Since the excitation

condition is sinusoidal with an industrial frequency of 50

Hz, a dynamic expansion of the model is required to

account for the impacts of both residual loss field Hexc

and eddy current loss field Heddy on hysteresis [12]. Then

the effective magnetic field considering the dynamic field

is improved as: 

(9)

where d denotes the thickness of the amorphous alloy, G

represents a dimensionless coefficient, G = 0.1356, v

represents the conductivity of the amorphous alloy material,

S signifies the cross-sectional area of the core, and V0

indicates a statistical parameter of residual loss. Let keddy
= vd2/12, kexc = (vSGV0)

1/2, keddy denotes the eddy current

loss coefficient; kexc denotes the residual loss coefficient,

obtained by parameter identification of the experimental

data in section 3.2. 

Thus, the stress-dependent hysteresis model considering
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Fig. 2. (Color online) Micro-schematic diagram of the model-

ing principle.
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dynamic effects is represented as:

 (10)

Subsequently, to investigate the magnetostriction properties

of amorphous alloys subjected to an external magnetic

field and compressive stresses oriented in various directions,

the atomic lengths within the cell following deformation

along the magnetization axis are derived utilizing an

improved probability distribution function:

 (11)

Further, the magnetostriction strain based on the

deformation associated with the orientation of the magnetic

moment is expressed as [10]: 

(12)

Where λ0 denotes the stress-dependent initial magneto-

striction. The so-called ΔE effect (change of magneto-

striction under stress) proposes an analytical expression

for the strain of materials in a state of non-zero stress and

zero magnetic field:

(13)

where σi is the applied stress along an ith direction, i =

{x, y, z}. 

In the absence of impediments during the process of

magnetization, the work associated with magnetic energy

governs the development of the anhysteretic magnetization

curve. The conventional representation of the anhysteretic

magnetization curve is characterized by a modified Langevin

function:

(14)

where a signifies the shape parameter of the anhysteretic

magnetization, a = 1/κ = Ms/(3χ0). 

However, when (H+αM)/a is made to converge to zero

and α is not zero, then there must be M = 0, but this is

contrary to the experimental measurements shown in the

graph of M = Mr at H = 0 (Mr is remanent magnetism).

The single-value correspondence with the applied magnetic

field is not established by the anhysteretic magnetization

curve. Thus, the conventional anhysteretic magnetization

equation is corrected as:

(15)

Fig. 3 illustrates a comparison between the traditional

and the modified anhysteretic magnetization curves. The
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Fig. 3. (Color online) Comparison of anhysteretic magnetization curves.
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amorphous alloy are more precisely depicted by the modified

magnetization curve.

The magnetic field strength H calculated from the dynamic

inverse JA model was brought into the corrected anhysteretic

magnetization equation. The anhysteretic magnetization

strength M’ was calculated by Newton's method [Eq.

(16)] and the calculated M’ and H were fitted, i.e., H =

f(M’).

 (16)

The results of the calculations in Eq. (16) are brought

into Eq. (12):

 (17)

From Eq. (17), the currently constructed magnetostriction

model describes the single-value relationship between

magnetostriction and magnetization strength. However,

experimental measurements show that λ of amorphous

alloys lags behind B (or M). The quantitative hysteresis

behavior and irreversibility are mainly attributed to the

irreversible magnetization strength of soft magnetic materials

Mirr [13]. A comparison between the measured and the

calculated results reveals that there is a slight variation in

irreversible magnetostriction in the opposite direction to

the applied magnetic field. Thus, this magnetostriction is

corrected to:

 (18)

where η is a partial coefficient that varies with material type, ξ

is a coefficient to be determined, and the parameters can be

obtained through the process of fitting the experimental data.

Combining Eq. (5) to (18), the magnetostriction of

amorphous alloys under compressive stresses in different

directions can be simulated. A flowchart illustrating this

process is presented in Fig. 4.

3. Magnetostriction Measurement
of Amorphous Alloys

3.1. Experimental measurements and data analysis

To validate the correctness of the proposed magnetostriction

model, a set of magnetic property measurement devices

for measuring the magnetic properties and magnetostriction

properties of amorphous alloys (grade 1K101, chemical

composition: Fe:80%, Si+B:20%) is built in this paper.

Due to the extreme thinness and fragility of the amorphous

strip post-annealing, the amorphous core is engineered to

be rolled from the amorphous alloy strip and subsequently

annealed to alleviate internal stresses. The magnetic circuit

apparatus comprises a series of excitation coils and induction

coils, with the sample under examination measuring

135.04 mm in length, 91.07 mm in width, and 50.43 mm in

thickness. The magnetic flux density waveform is controlled
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Fig. 4. (Color online) Simulation flow diagram of the magnetostriction model.
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to be a standard sinusoidal signal with a frequency of

50 Hz by the constructed magnetic property measurement

system, and its waveform coefficient is within 1.11 ± 1%,

which is in accordance with the international measurement

standard of magnetic properties [14]. The measurement

system utilized for the amorphous alloys is illustrated in

Fig. 5(a). During the application of compressive stress to

the amorphous core, a force is exerted on the C-type clamp

(which is non-conductive), allowing for the determination of

compressive stress via a stress sensor, with the results

displayed on a meter. The clamping device responsible

for applying compressive stress in the Y direction is

depicted in Fig. 5(b).

In the assessment of magnetostriction properties, the

magnetostriction strain signal of an amorphous iron core

is evaluated utilizing a resistive strain gauge. These resistance

Fig. 5. (Color online) Magnetostriction measurement.

Fig. 6. (Color online) Magnetostrictive curves with different compressive stresses at Bp = 1.2T.
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strain gauges are affixed to the surface of the core,

ensuring that their horizontal orientation aligns with the

direction of the magnetic circuit. The strain gauges are

connected to a strain bridge box and a strain amplifier to

facilitate the detection of strain signals. The resulting

magnetostriction measurement curves over time, under

varying directions of compressive stress, are illustrated in

Fig. 6. The data indicate that the magnetostriction strain

diminishes from 11.33946 to 11.24952 as the stress increases

from 200 kPa to 600 kPa in the Z direction. Similarly, in

the Y direction, the magnetostriction strain decreases from

10.88828 to 8.55974 with the same increase in stress.

3.2. Parameter extraction

The parameters required for the stress-dependent

magnetostriction model established in this paper are extracted

from the experimentally measured hysteresis loops and

magnetostriction loops. The extraction method employed

is the Velocity-Controlled Particle Swarm Optimization

(VCPSO) algorithm [15]. In the optimization process, the

parameters of the hysteresis model can be extrapolated to

the parameters of the magnetostriction model. The flow

chart of VCPSO parameter identification is shown in Fig. 7.

The hysteresis model parameters in this paper are

determined by identifying hysteresis loops at the static

saturation flux density Bp measured in the absence of

stress, and the parameters are shown in Table 1. To extract the

residual loss coefficient kexc, the residual loss Wexc is first

calculated from the hysteresis loops and total losses at f =

5 Hz and f = 50 Hz for different peak flux densities and

stresses [14]. The expression for the residual loss under

sinusoidal excitation is given by: 

 (19)

According to the formula of residual loss under sinusoidal

excitation, the residual loss coefficients kexc under different

peak flux densities Bp and stresses σ are identified, and a

three-dimensional distribution surface plot illustrating

dynamic parameter kexc across different peak flux densities Bp

and Y direction compressive stresses σ is constructed and

presented in Fig. 8. The observation is that the residual

loss coefficient kexc increases with the rise in magnetic

flux density at different stress conditions. The fitting equation

of the residual loss coefficient kexc to the flux density

magnitude and stress is expressed as: 

 (20)

Based on the expression obtained from the above fitting

of the parametric nonlinear surface, the residual loss
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Fig. 7. (Color online) VCPSO Algorithm flow chart.

Table 1. Parameters of the hysteresis model.

Ms/(A/m) k/(A/m) a α c

1.40 × 106 184.499 458.99 9.712 × 10-4 0.885

Table 2. Magnetostriction parameters under different σ at 1.2T

σ/MPa ξ η λs/(×10
6)

Y-direction 

compressive stress

0.2 0.152 0.988 64.865

0.4 0.149 0.985 56.264

0.6 0.149 0.984 55.692

Z-direction 

compressive stress

0.2 0.158 0.986 66.472

0.4 0.158 0.985 66.162

0.6 0.158 0.984 65.761

Fig. 8. (Color online) Residual loss coefficient kexc 3D fitting

plot.
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coefficient kexc can be predicted for any flux density amplitude

and stress. Then, employing the identified hysteresis model

parameters as input, the magnetostriction model parameters

are obtained according to the magnetostriction curves at

different σ, as shown in Table 2. 

4. Simulation Results and Discussion

Utilizing the derived model parameters in conjunction with

the stress-related hysteresis model and the magnetostriction

model presented in this study, simulations of the hysteresis and

magnetostriction properties under varying orientations of

compressive stresses at an excitation frequency of 50 Hz

are conducted. These simulations are then compared with

the corresponding experimental findings.

When compressive stresses of 200 kPa and 600 kPa are

applied to the amorphous alloy core in the Y and Z directions,

respectively, the outcomes derived from simulations of

hysteresis loops and magnetostriction loops generally

align with the experimental findings, as illustrated in

Figs. 9 and 10. The application of compressive stress

along the Z-direction does not significantly affect the

magnetostriction of the amorphous alloy. In contrast, a

marked change in magnetostriction is observed when

compressive stress is applied in the Y-direction. A comparison

of the magnetostriction loops at varying stress levels within

the same direction reveals that the maximum magnetostriction

strain of the amorphous alloys diminishes as compressive

stress increases. This phenomenon indicates that the

application of compressive stress modifies the movement

and deflection of the magnetic moment within the

amorphous alloy, thereby restricting the magnetic moment's

ability to deflect in the direction associated with easy

magnetostriction.

5. Conclusion

This study presents an enhanced micro-statistical model

for amorphous alloys characterized by the absence of a

crystalline structure and a random arrangement of atomic

magnetic moments. By integrating this model with the

inverse JA energy balance theory and the irreversible

component, a refined stress-dependent magnetostriction

model for amorphous alloys is developed, which takes

into account the hysteresis effect. The proposed model

effectively simulates the hysteresis loop and magnetostriction

loop of amorphous alloys subjected to varying compressive

stresses in multiple directions, thereby offering a robust

framework for the precise prediction of vibrations in

amorphous cores.
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