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This study presents a stress-dependent magnetostriction model that incorporates hysteresis effects to simulate
the magnetostriction properties of amorphous alloys in response to variations in magnetic fields and stress. The
model is grounded in a microscopic statistical constructive framework. Given the absence of a crystalline
structure in amorphous materials, a probability distribution function is developed to account for stress effects,
which characterizes the randomly distributed magnetic moments within the amorphous matrix through the
concept of locally ordered magnetic moment regions. The relationship between magnetostriction and magnetization
is established by integrating the derived stress-dependent magnetostriction expression with a modified anhysteretic
magnetization model. Hysteresis effects are addressed by incorporating an irreversible magnetization component, as
informed by the inverse Jiles-Atherton theory. The parameters of the model are calibrated using experimental
data. The simulation outcomes demonstrate that the proposed model successfully replicates the magnetostriction loop

while accounting for stress influences.
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1. Introduction

In contrast to silicon steel materials, amorphous alloys
lack a defined crystalline structure and structural imperfections
that hinder the movement of magnetic domain walls at
the microscopic level. At a macroscopic scale, amorphous
alloys exhibit several advantageous properties, including
low energy loss, high permeability, and elevated saturation
flux density. Specifically, at equivalent frequencies and
flux densities, the core loss of amorphous stator materials
is approximately 18.4% that of silicon steel stator cores,
while their permeability is roughly double that of silicon
steel [1]. Consequently, the utilization of amorphous alloys in
place of traditional silicon steel for the cores of low-power,
high-frequency electrical equipment can lead to a significant
reduction in core losses, presenting promising prospects
for applications in motor design. However, the thickness
of amorphous alloy strips is only one-tenth that of silicon
steel, resulting in heightened sensitivity to stress, and their
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magnetostriction is considerably greater than that of silicon
steel, which induces stronger vibrations [2, 3]. If core
vibrations are mitigated through the application of stress,
the magnetic properties of the core may be compromised.
Therefore, it is essential to investigate the mechanisms by
which stress influences the magnetization and magnetostriction
characteristics of amorphous alloys.

Presently, conventional models of stress-dependent
magnetostriction can be developed utilizing various
theoretical frameworks, including phenomenological theory,
thermodynamic models, magnetic domain theory, and
multiscale models. The phenomenological model primarily
captures the influence of stress on magnetostriction by
incorporating a stress term into the distribution function
derived from first-order and second-order slew curves [4].
However, this model is complex, necessitating extensive
calculations, and lacks a robust physical interpretation.
The thermodynamic model, on the other hand, derives the
magnetostriction strain equation through the partial
differentiation of Gibbs free energy with respect to stress,
offering a more straightforward computational approach.
Nonetheless, this model is contingent upon experimental
data, and certain parameters are challenging to ascertain [5].
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The magnetic domain theory model addresses magnetostriction
by analyzing domain motion and deflection in relation to
domain energy [6], allowing for the consideration of stress
effects through the evaluation of magnetoelastic energy.
However, this model is characterized by a considerable
number of unknown parameters. The multiscale model
captures the response of single crystals by examining the
behavior of local magnetic fields and stresses at the
domain level, subsequently applying the principle of
homogenization to extend these insights to polycrystalline
materials. Despite its advantages, this model is associated
with prolonged computational times and is not suitable
for finite element numerical analyses [7]. A simplified
multiscale model has been proposed, which assumes that
each single crystal comprises six magnetic domains, with
the energy of each domain represented by a simplified free
energy function, thereby significantly reducing computational
time [8]. However, this simplified approach fails to account
for the hysteresis effect inherent in magnetostriction.
Furthermore, given that amorphous alloys lack a crystalline
structure, this model does not adequately address the
unique characteristics of amorphous materials. In conclusion,
existing magnetostriction models predominantly concentrate
on silicon steel materials, neglecting the distinctions
present in amorphous alloys. Additionally, some studies
yield single-valued curves of magnetostriction in relation
to magnetization strength, without adequately considering
the hysteresis effect induced by magnetic field excitation
and the dependence on stress.

This paper presents an improved magnetostrictive
model for amorphous alloys that takes into account the
influence of compressive stress. The model effectively
correlates macroscopic magnetic behavior with statistical
outcomes derived from microscopic behavior, thereby
providing a physically coherent framework. The parameters
of the model are determined using experimental measurement
data, and the validity of the proposed model is substantiated
by comparing the simulation results with the relevant
experimental findings.

2. Stress-dependent Magnetostriction
Model of Amorphous Alloys

2.1. Improved microscopic statistical constructive model

Amorphous alloys do not have a crystal structure and the
atomic magnetic moments are usually randomly distributed in
an irregular structure resulting in the lack of magneto-
crystalline anisotropy properties. Thus, it is regarded as
an isotropic material [9]. A schematic illustration of the
magnetostriction mechanism in an isotropic material is
presented in Fig. 1. Within this diagram, each atom is
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Fig. 1. (Color online) Schematic diagram of magnetostriction
mechanism.

individually illustrated by a solid ellipse, and the
magnetic moments of the atoms are indicated by arrows.
For the macroscopic isotropy of amorphous alloys, the
free energy of the atomic magnetic moment can be
expressed as the sum of the Seeman energy W,,, and
the stress anisotropy energy W, [8]:

W= W,

_l-s%ooa(alzﬂlz"'azzﬂZ"'a;ﬂsz) )
_311 1 |O-(a1 aZﬁlﬂZ + az“sﬂzﬂ} + a]“}ﬂ]ﬂ_@)

+W, =—p,HM (a7, + a,, + a575)

where o represents the applied stress; H and M, correspond to
the external magnetic field and saturation magnetization
strength, respectively; the saturation magnetostriction
coefficient is given by A; 1 denotes the vacuum permeability;
Oy Ym and B, (m = {1, 2, 3}) are the direction cosines of
the magnetization strength M, magnetic field strength H
and applied stress o in the X, Y, Z directions, respectively;
A100, 4111 are the magnetostriction coefficients in the [100],
[111] directions, respectively.

According to the actual working condition of the stress-
actuated amorphous iron core, this paper considers the
compressive stress applied perpendicular to the magnetic
circuit direction of the core, and the magnetic field
direction along the X-axis. When the compressive stress is
applied along the Y-direction, ;= ;= 10, y,=7;=0. And
since amorphous alloys are macroscopically isotropic, the
magnetostriction coefficients of the directions are the
same, i.e., 4190 = 4111 = 4;. The free energy of the magnetic
moment then simplifies to:

W, = Wmag +W, =—uHM oy, —1 '5/7«0-“22:822 2

The micro-statistical constructive model is established
through probabilistic statistical analysis of the angular
dispersion of magnetic moments and the corresponding
deformation associated with the orientation of these
moments, as shown in Fig. 2; where /, represents the length of
the initial atomic structure, p, represents the deformation.
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Fig. 2. (Color online) Micro-schematic diagram of the model-
ing principle.

The modeling approach is to intercept a face of the
three-dimensional structure inside the material and divide
the magnetic moment distribution on that face into n
angles 6 [10]. Each atom's magnetic moment i corresponds to
a probability distribution g(6;) for that magnetic moment
angle. According to the actual working condition of stress
action, the compressive stress applied to the core in the
direction that is perpendicular to the magnetic circuit is
considered in this paper. Therefore, the improved probability
distribution function can be expressed as:

g,-(H, O_) —Ue W = Uekchs()-#a\asinz()sinz(/) (3)
where U is a normalized function of stress and magnetic field,
K = toAsMs, o, = 1.54; a material parameter associated with
the initial susceptibility ° is represented as A, As = 3" /uoMy*.

The integral of the probability function g to the overall
distribution is 1, i.e.:

[gav =U [ dp ereeesnoinein gag =1 @)

Once the new probability distribution function is defined,
combining Egs. (3) and (4), the macroscopic magnetization
strength M; of amorphous alloys under applied stress in
the Y-direction can be obtained by three-dimensional
integration:

M, = Myzgi cosf,

=M, do]

)(Hcosﬁﬂz osin’ Gsin® ¢ (5)
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2.2. Stress-dependent magnetostriction model of amor-
phous alloys

Since the micro-statistical model can take into account
the effect of stress and the inverse JA model exhibits the
hysteresis effect, the two are combined. The anhysteretic
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magnetization intensity from the inverse JA model is
replaced by Eq. (5). And according to the mean-field
theory, the magnetic field A in Eq. (5) is corrected to the
effective magnetic field H, [11]. The constructed stress-
dependent hysteresis model is represented as:

- )dM cdM, (o,H)
d_M_ e lu(JdHe (6)
te-a) Wl Ly - o1-a) e

where B, represents the effective magnetic density; o signifies
the mean-field coupling inside the magnetic domain; c is
the reversible parameter; the stress-related anhysteretic
magnetization M, (o, H,) is expressed as follows:

KH, cosO+a,osin’ Osin’ o

‘ cos@sin OdO

27 g
M 7He = Ms d z 4 in® Osin®
(o H) =M [ dof; [ dpf ertesraoson’e sin pap
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M, denotes the irreversible magnetization; dM,,/dB, is
represented as:

dM,, _5,(M,,(0.H)-M,,)

irr irr

dB 1,0k ®)

e

Where k represents the pinning parameter; Jy, is the
bounding coefficient defined to prevent the emergence of
non-physical solutions; J indicates the direction coefficient.

H, denotes the effective magnetic field. Since the excitation
condition is sinusoidal with an industrial frequency of 50
Hz, a dynamic expansion of the model is required to
account for the impacts of both residual loss field H,,.
and eddy current loss field /., on hysteresis [12]. Then
the effective magnetic field considering the dynamic field
is improved as:

H e_dwn — H -H eddy -H exc
2 ©
—n, - 9B 5 [sGy, ast
12 dt dt

where d denotes the thickness of the amorphous alloy, G
represents a dimensionless coefficient, G = 0.1356, v
represents the conductivity of the amorphous alloy material,
S signifies the cross-sectional area of the core, and ¥
indicates a statistical parameter of residual loss. Let k.44
= vd*12, kpe = (VSGV5)", koas, denotes the eddy current
loss coefficient; k... denotes the residual loss coefficient,
obtained by parameter identification of the experimental
data in section 3.2.

Thus, the stress-dependent hysteresis model considering
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dynamic effects is represented as:

(1 ) dM[rr dyn CdM(m (O-’ He dyn )
—c I -
de,vn _ dBc IuodHeJiyn
- dM (o, H, dm,
dB 1+c(1—a) un(a ¢7dyn) +/JO(1—C)(1_(Z) irr _dyn
e_dyn dBe
(10)

Subsequently, to investigate the magnetostriction properties
of amorphous alloys subjected to an external magnetic
field and compressive stresses oriented in various directions,
the atomic lengths within the cell following deformation
along the magnetization axis are derived utilizing an
improved probability distribution function:

I(H,0)=l,+ pl, > g(6)|cos 0]

=l +pl J-quaj-ﬂg(H a)|cos€|sint9dt9 a
0 s°0 0 0 s
Further, the magnetostriction strain based on the
deformation associated with the orientation of the magnetic
moment is expressed as [10]:

1= I(H,0)-I(H =0,0)

7 = 2(c=0)

y4 T . 1
+2,15(I02 dgpj‘o g|cos <9|sm (9d49—5) (12)

=2, (JOZ” d;oJ? g(H,o) |cos 0| sin 6d 6 —%)

Where 1y denotes the stress-dependent initial magneto-
striction. The so-called AE effect (change of magneto-
striction under stress) proposes an analytical expression
for the strain of materials in a state of non-zero stress and
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zero magnetic field:
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)
) (13)
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where o; is the applied stress along an ith direction, i =
{x, y, z}.

In the absence of impediments during the process of
magnetization, the work associated with magnetic energy
governs the development of the anhysteretic magnetization
curve. The conventional representation of the anhysteretic
magnetization curve is characterized by a modified Langevin
function:

M'= M [coth(

H a H+aoaM a
£)——1]= M [coth -
T G e Syl

(14)

where a signifies the shape parameter of the anhysteretic
magnetization, a = 1/x = M/(3)°).

However, when (H+aM)/a is made to converge to zero
and a is not zero, then there must be M = 0, but this is
contrary to the experimental measurements shown in the
graph of M = M, at H= 0 (M, is remanent magnetism).
The single-value correspondence with the applied magnetic
field is not established by the anhysteretic magnetization
curve. Thus, the conventional anhysteretic magnetization
equation is corrected as:

H+aM' a
M"=M'-M [coth -
S(M) ([coth( s ) ol

1=0 (15)

Fig. 3 illustrates a comparison between the traditional
and the modified anhysteretic magnetization curves. The
analysis indicates that the magnetization properties of the
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Fig. 3. (Color online) Comparison of anhysteretic magnetization curves.
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Fig. 4. (Color online) Simulation flow diagram of the magnetostriction model.

amorphous alloy are more precisely depicted by the modified
magnetization curve.

The magnetic field strength H calculated from the dynamic
inverse JA model was brought into the corrected anhysteretic
magnetization equation. The anhysteretic magnetization
strength M~ was calculated by Newton's method [Eq.
(16)] and the calculated M’ and H were fitted, i.e., H =

AMD).

S(M)
AM)= ML 16
10 (16)
The results of the calculations in Eq. (16) are brought
into Eq. (12):

2=2,(J;" do[ gl f(M").0]|cos b]sin 66 - %) (17)

From Eq. (17), the currently constructed magnetostriction
model describes the single-value relationship between
magnetostriction and magnetization strength. However,
experimental measurements show that 1 of amorphous
alloys lags behind B (or M). The quantitative hysteresis
behavior and irreversibility are mainly attributed to the
irreversible magnetization strength of soft magnetic materials
M, [13]. A comparison between the measured and the
calculated results reveals that there is a slight variation in
irreversible magnetostriction in the opposite direction to
the applied magnetic field. Thus, this magnetostriction is
corrected to:

2 Ve . 1
A=22([ do| LS (EM+nM,,).0cossin0d0-) (18)

where 7 is a partial coefficient that varies with material type, &
is a coefficient to be determined, and the parameters can be
obtained through the process of fitting the experimental data.

Combining Eq. (5) to (18), the magnetostriction of
amorphous alloys under compressive stresses in different
directions can be simulated. A flowchart illustrating this
process is presented in Fig. 4.

3. Magnetostriction Measurement
of Amorphous Alloys

3.1. Experimental measurements and data analysis

To validate the correctness of the proposed magnetostriction
model, a set of magnetic property measurement devices
for measuring the magnetic properties and magnetostriction
properties of amorphous alloys (grade 1K101, chemical
composition: Fe:80%, Si+B:20%) is built in this paper.
Due to the extreme thinness and fragility of the amorphous
strip post-annealing, the amorphous core is engineered to
be rolled from the amorphous alloy strip and subsequently
annealed to alleviate internal stresses. The magnetic circuit
apparatus comprises a series of excitation coils and induction
coils, with the sample under examination measuring
135.04 mm in length, 91.07 mm in width, and 50.43 mm in
thickness. The magnetic flux density waveform is controlled
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to be a standard sinusoidal signal with a frequency of
50 Hz by the constructed magnetic property measurement
system, and its waveform coefficient is within 1.11 £ 1%,
which is in accordance with the international measurement
standard of magnetic properties [14]. The measurement
system utilized for the amorphous alloys is illustrated in
Fig. 5(a). During the application of compressive stress to
the amorphous core, a force is exerted on the C-type clamp

(which is non-conductive), allowing for the determination of
compressive stress via a stress sensor, with the results
displayed on a meter. The clamping device responsible
for applying compressive stress in the Y direction is
depicted in Fig. 5(b).

In the assessment of magnetostriction properties, the
magnetostriction strain signal of an amorphous iron core
is evaluated utilizing a resistive strain gauge. These resistance
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strain gauges are affixed to the surface of the core,
ensuring that their horizontal orientation aligns with the
direction of the magnetic circuit. The strain gauges are
connected to a strain bridge box and a strain amplifier to
facilitate the detection of strain signals. The resulting
magnetostriction measurement curves over time, under
varying directions of compressive stress, are illustrated in
Fig. 6. The data indicate that the magnetostriction strain
diminishes from 11.33946 to 11.24952 as the stress increases
from 200 kPa to 600 kPa in the Z direction. Similarly, in
the Y direction, the magnetostriction strain decreases from
10.88828 to 8.55974 with the same increase in stress.

3.2. Parameter extraction

The parameters required for the stress-dependent
magnetostriction model established in this paper are extracted
from the experimentally measured hysteresis loops and
magnetostriction loops. The extraction method employed
is the Velocity-Controlled Particle Swarm Optimization
(VCPSO) algorithm [15]. In the optimization process, the
parameters of the hysteresis model can be extrapolated to
the parameters of the magnetostriction model. The flow
chart of VCPSO parameter identification is shown in Fig. 7.

The hysteresis model parameters in this paper are
determined by identifying hysteresis loops at the static
saturation flux density B, measured in the absence of
stress, and the parameters are shown in Table 1. To extract the

Input population size, maximum
number of iterations, particle swarm
position and velocity

l Output the optimal
Initialize particle swarm solution for M, k, ¢, @, a
parameters

The magnetostriction model
developed in this paper

The hysteresis model
developed in this paper

Updating
population
parameters

Start iteration, fitness function|
calculation

Updating
population
parameters

Satisty accuracy’
requirements?

Output the optimal
solution for 4, 7, &

Fig. 7. (Color online) VCPSO Algorithm flow chart.

Table 1. Parameters of the hysteresis model.
M/(A/m) k/(A/m) a a c
1.40 x 10° 184.499 458.99 9.712 x 10* 0.885
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residual loss coefficient k,,., the residual loss W,,. is first
calculated from the hysteresis loops and total losses at f'=
5 Hz and f'= 50 Hz for different peak flux densities and
stresses [14]. The expression for the residual loss under
sinusoidal excitation is given by:

W, = 8.76kmB]17'5 fas (19)

According to the formula of residual loss under sinusoidal
excitation, the residual loss coefficients k.. under different
peak flux densities B, and stresses o are identified, and a
three-dimensional distribution surface plot illustrating
dynamic parameter k... across different peak flux densities B,
and Y direction compressive stresses o is constructed and
presented in Fig. 8. The observation is that the residual
loss coefficient k. increases with the rise in magnetic
flux density at different stress conditions. The fitting equation
of the residual loss coefficient k.. to the flux density
magnitude and stress is expressed as:

k.. =0.04695+0.125390 +0.14639B, — 0.20860°

~0.0243982 ~0.054160B, (20)

Based on the expression obtained from the above fitting
of the parametric nonlinear surface, the residual loss

0.20

0.18

= <
o X

@ kg identification results

Fig. 8. (Color online) Residual loss coefficient k. 3D fitting
plot.

Table 2. Magnetostriction parameters under different o at 1.2T

o/MPa & n /(31076
direct 02 0152 0988 64865
~direction 04 0149 0985 56264
compressive stress
06 0149 0984 55692
vt 02 0158 098 66472
~direction 04 0158 0985  66.162

compressive stress

0.6 0.158 0.984 65.761
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coefficient k. can be predicted for any flux density amplitude
and stress. Then, employing the identified hysteresis model
parameters as input, the magnetostriction model parameters
are obtained according to the magnetostriction curves at
different o, as shown in Table 2.

4. Simulation Results and Discussion

Utilizing the derived model parameters in conjunction with
the stress-related hysteresis model and the magnetostriction
model presented in this study, simulations of the hysteresis and
magnetostriction properties under varying orientations of
compressive stresses at an excitation frequency of 50 Hz
are conducted. These simulations are then compared with
the corresponding experimental findings.

When compressive stresses of 200 kPa and 600 kPa are
applied to the amorphous alloy core in the Y and Z directions,
respectively, the outcomes derived from simulations of
hysteresis loops and magnetostriction loops generally
align with the experimental findings, as illustrated in
Figs. 9 and 10. The application of compressive stress
along the Z-direction does not significantly affect the
magnetostriction of the amorphous alloy. In contrast, a
marked change in magnetostriction is observed when
compressive stress is applied in the Y-direction. A comparison
of the magnetostriction loops at varying stress levels within
the same direction reveals that the maximum magnetostriction
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Fig. 9. (Color online) Comparison of simulated and measured
hysteresis loops.
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Fig. 10. (Color online) Comparison of simulated and measured
magnetostriction loops.

strain of the amorphous alloys diminishes as compressive
stress increases. This phenomenon indicates that the
application of compressive stress modifies the movement
and deflection of the magnetic moment within the
amorphous alloy, thereby restricting the magnetic moment's
ability to deflect in the direction associated with easy
magnetostriction.

5. Conclusion

This study presents an enhanced micro-statistical model
for amorphous alloys characterized by the absence of a
crystalline structure and a random arrangement of atomic
magnetic moments. By integrating this model with the
inverse JA energy balance theory and the irreversible
component, a refined stress-dependent magnetostriction
model for amorphous alloys is developed, which takes
into account the hysteresis effect. The proposed model
effectively simulates the hysteresis loop and magnetostriction
loop of amorphous alloys subjected to varying compressive
stresses in multiple directions, thereby offering a robust
framework for the precise prediction of vibrations in
amorphous cores.
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